

Study of Drifting behaviour of aquatic mites in the snow fed river Alaknanda from Garhwal Himalaya: Density, Diversity and Diel Pattern

Pankaj Bahuguna¹ and A.K. Dobriyal²

¹Aquatic biodiversity Lab, Department of Zoology, Govt. P.G. College Jaiharikhal-246193, Uttarakhand, India. ²Department of Zoology, H. N. B. Garhwal University (A Central University), B. G. R. Campus Pauri, Pauri Garhwal- 246001, Uttarakhand, India.

*Corresponding author: pankajpaurii@gmail.com

Received: 18.05.2022, Revised: 12.06.2022, Accepted: 17.06. 2022

©Society for Himalayan Action Research and Development

Abstract: Hydrachnida or water mites are most diverse group amongst Acari and they play an important role as bioindicator for their adjoining habitat. In the present study data for drift density, diversity and diel drift pattern was recorded from January 2018 to December 2018. Total 743 individuals belonging to 25 species were noted. Species *Atractides panesari, Feltria gereckei, Feltria rubra* and *Lebertia glabra* displayed nocturnal drift and species *Torrenticola turkestanica, Monatractides garhwalensis, Sperchon indicus and Sperchon garhwalensis* displayed both diurnal and nocturnal drift. Maximum 17 species exhibited diurnal drift throughout the course of the study. Presence of *Hygrobates fluviatilis*, a pollution tolerant species reflected the polluted condition of water.

Key words: Water mites, Drift, Snow fed river Alaknanda, Garhwal Himalaya

Introduction

Drifting refers to the downstream movement of water mites and other invertebrates along the stream current, and the record of their 24 hours movement is known as diel drift pattern. Water mites are powerful fauna of freshwater resources with bio indicator properties and also act as biocontrol agent for aquatic insect pests (Namdari et. al., 2014). They are highly diverse, colorful arachnids that can be observed globally in most of the freshwater habitats. Water mites as bioindicators were also studied by Kowalik and Biesiadka (1981), Biesiadka and Kowalik (1991), Cicolani and Di Sabatino (1991), Zawal (1992, 2003), Martin and Brinkmann (2003) and Martin and Brunke (2012). Though the water mites are an important meiobenthic group, however due to difficulties related to morphological analysis there are still many species yet to be discovered. On first encounter

they seem like small water spiders but when deeply observed they are differently identified as aquatic mites. Hydrachnida distributed globally and creates the higher complexity of trophic networks as they act as both predator and parasite to many of aquatic invertebrates; but till date only over 6000 species were identified worldwide. As they are carnivorous in food habit, they are abundant in water bodies, those are rich in vegetation composition as well as having diverse animal life. Usually they are observed throughout all seasons in variable water temperature but there are some specific species which are found only in snow fed or spring fed river according to their suitability against ecological and habitat preferences. They are polyphyletic in origin as wide variation is noticed in larval stage (Wolcott, 1905). They are

brilliantly colored; some common colors are red, brown, yellow, scarlet and orange.

Water mites play an important role in regulating the population of other invertebrates and through this way play significant role in maintaining food chain. Pioneer work involving analysis of density, diversity, population structure and drifting patterns of aquatic mites from Randi Gad spring fed streams was carried out by Bahuguna *et al.* (2019), Bahuguna & Dobriyal (2020) and Negi et.al., (2021a,b) . Density and diversity of aquatic mites in a glacier-fed River Alaknanda from Garhwal Central Himalaya were also carried out by Bahuguna *et al.* (2020). The objective of this study was to observe and assess the occurrence of aquatic mites in river Alaknanda and their distributional pattern.

Materials And Methods

Study Area

The present study was conducted on Alaknanda River which rises in the southern Himalayas and originates from the Satapanth Glacier. Two different locations were identified for sampling on Alaknanda River located between latitude 30° 22' 45" to 30° 23' 38" N and longitude 78° 78' 36" to 78° 72' 35" E at ITI Srinagar (A) and Maletha (B) (Fig 1).

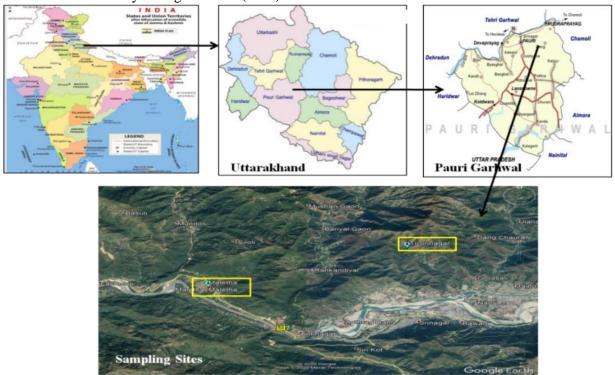


Figure 1: Location of sampling sites

Sampling Design and Analysis

Drifting sample of water mites were collected by using 1 m^2 diel drift net on substratum for repeated two-hours periods over 24 hours at each sampling site. All collected aquatic mites were preserved in 70% ethanol in the field and later on were transferred to Koenike's fluid and dissected. Species identification was done with the help of various keys (Cook, 1967, 1974; Prasad, 1974; Gerecke, 2003; Kumar et.al., 2006, 2007; Pesic and Panesar, 2008; Pesic et.al., 2007a,b; 2019a,b; 2020a,b).

Result

Data related to the drifting density and diversity is presented the Table 1. Altogether 743 water mite individuals belonging to 25 species were

collected during the study. These 25 species belonged to 9 families (Torrenticolidae, Sperchontidae. Hygrobatidae, Aturidae. Arrenuridae, Feltriidae. Lebertiidae, Limnesiidae and Unionicolidae). It was found that drift density and diversity of aquatic mites were recorded highest during the month of February (130) and lowest during August (06). The maximum drift individual number were recorded 90 of Hygrobates fluviatilis and minimum of Feltria rubra with only 05 individuals.

Diel drift pattern of aquatic mites from January 2018 to December 2018 are presented in the Table 2. The observed pattern of diel periodicity of several aquatic mite species (Torrenticola *Torrenticola* tetraporella, semisuta, **Monatractides** oxystomus, *Monatractides* tuzovskyi, Sperchon clupeifer, Atractides indicus, nodipalpis, Atractides **Atractides** garhwali, Hygrobates gangeticus, Hygrobates fluviatilis, Kongsbergia indica, Kongsbergia rucira, Aturus fontinalis, Arrenurus kurtvietsi, Arrenurus fontinalis, Limnesia lembangensis and Unionicola affinis) drifts were during day time, few species (Atractides panesari, Feltria gereckei, Feltria rubra and Lebertia glabra during night and some species (Torrenticola turkestanica. Monatractides garhwalensis, Sperchon indicus and Sperchon garhwalensis) recorded a mixed drift pattern.

Discussion

During the course of whole study, a total number of 25 species were recorded. The maximum density of drifting mite individuals were noticed in February (130) and the lowest drift was observed in July (06) in the snow fed river Alaknanda. Graesser (1988) also reported decreasing drift densities with increasing discharge in flood-prone streams in south Westland, New Zealand. Chaston (1968), noticed maximum drift density in summer due to insect emergence as most life cycle stages can be found in the drift. Chaston (1968) has opined that correlations of feeding and drift may be due to the fish foraging. The drift periodicity differs among sites that varied in Ichthyofaunal composition (Elliott, 1970). Bahuguna et.al. (2019) also reported fish predation and invertebrate drift relation in the Kyunja Gad stream.

Table 1: Drifting Density and diversity of aquatic mites in snow fed river Alaknanda during January 2018 to December 2018

s.no	Name of species	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total No. of individuals
1.	Family – Torrenticolidae Piersig, 1904													
	Genus - Torrenticola Piersig, 1904													
а	Torrenticola turkestanica	06	06	04	01	01	03	00	01	01	06	04	06	39
b	Torrenticola tetraporella	01	06	05	04	01	01	01	00	01	03	01	01	25
с	Torrenticola semisuta	05	05	06	04	04	05	00	01	01	04	04	06	45
	Total	12	17	15	09	06	09	01	02	03	13	09	13	109
	Genus - Monatractides K.Viets, 1926													
d	Monatractides garhwalensis	08	09	07	04	06	04	00	03	04	04	07	09	65
e	Monatractides oxystomus	04	06	04	01	01	01	00	00	01	01	04	01	24
f	Monatractides tuzovskyi	07	08	06	04	01	04	01	00	01	01	01	06	40
	Total	19	23	17	09	08	09	01	03	06	06	12	16	129
2.	Family – Sperchontidae Thor, 1900													
	Genus - Sperchon Kramer, 1877													
g	Sperchon indicus	05	08	04	06	04	06	01	00	04	06	05	06	55
h	Sperchon clupeifer	01	07	04	00	00	01	00	00	01	00	01	04	19
i	Sperchon garhwalensis	04	06	04	01	01	00	00	00	01	01	00	04	22
	Total	10	21	12	07	05	07	01	00	06	07	06	16	96
3.	Family - Hygrobatidae Koch, 1842													
	Genus - Atractides Koch, 1837													
j	Atractides nodipalpis	08	07	03	07	06	00	00	00	01	02	03	04	41
k	Atractides indicus	04	02	01	00	02	00	00	00	00	01	01	04	15
1	Atractides garhwali	06	04	01	01	01	01	01	00	01	04	01	04	25
m	Atractides panesari	02	04	00	00	01	00	01	00	00	01	00	00	09
	Total	20	17	05	08	10	01	02	00	02	08	05	12	90
	Genus - Hygrobates Koch, 1837					-	-	-		-				
n	Hygrobates gangeticus	04	04	04	01	00	01	01	00	00	00	01	00	16
0	Hygrobates fluviatilis	10	14	08	12	08	06	05	01	04	06	07	09	90
	Total	14	18	12	13	08	07	06	01	04	06	08	09	106
4.	Family - Aturidae Thor, 1900													
	Genus - Kongsbergia Thor, 1899													
р	Kongsbergia indica	04	06	04	04	06	00	00	00	00	01	01	04	30
q	Kongsbergia rucira	01	04	00	01	04	01	01	00	01	04	06	04	27
	Total	05	10	04	05	10	01	01	00	01	05	07	08	57
r	Genus – Aturus Kramer,1875										<u> </u>			
	Aturus fontinalis	02	03	01	00	00	00	00	00	00	00	00	01	07
5.	Family - Arrenuridae Thor, 1900													

DOI:<u>https://doi.org/10.51220/jmr.v17i1.20</u>

	Genus - Arrenurus Dugès, 1834													
S	Arrenurus kurtvietsi	04	05	04	06	01	04	01	00	01	04	01	04	35
t	Arrenurus fontinalis	04	01	01	04	01	06	01	00	00	01	04	01	24
	Total	08	06	05	10	02	10	02	00	01	05	05	05	59
6.	Family - Feltriidae K.Viets, 1926													
	Genus - Feltria Koenike, 1892													
u	Feltria gereckei	04	03	01	02	01	01	01	00	00	04	01	01	19
v	Feltria rubra	02	01	00	02	00	00	00	00	00	00	00	00	05
	Total	06	04	01	04	01	01	01	00	00	04	01	01	24
7.	Family - Lebertiidae Thor, 1900													
	Genus - Lebertia Neuman, 1880													
W	Lebertia glabra	06	01	04	04	04	04	06	00	06	04	01	04	44
8.	Family - Limnesiidae Thor, 1900													
	Genus - Limnesia Koch, 1836													
х	Limnesia lembangensis	04	06	01	01	01	00	00	00	00	00	01	01	15
9	Family - Unionicolidae Oudemans, 1909													
	Genus - Unionicola Haldeman, 1842													
у	Unionicola affinis	01	04	00	00	00	00	01	00	00	00	00	01	07
	Total no of individual species	107	130	77	70	55	49	22	06	29	58	55	85	743

Table 2: Diel Drift pattern of aquatic mites in snow fed river Alaknanda

S.N	Name of species	Snow fed Alaknanda River											
Α	Periodicity		Diurnal drift										
В	Sampling Time	4.15.pm	6.30pm	8.45pm	11.0pm	1.45am	4.0am	6.15am	8.30am	10.45am	1.0am	3.15pm	Total no.
	······································	to	to	to	to	to	to	to	to	to	to	to	of ind.
		6.15pm	8.30pm	10.45pm	1.30am	3.45am	6.00am	8.15am	10.30am	12.45pm	3.0pm	4.15pm	mites
С	Category	Early	Late	Night	Night	Night	Early	Late	Day	Day	Day	Day	drift in
		evening	evening	period	period	period	morning	morning	Period	Period	Period	Period	whole year
1	Torrenticola turkestanica	3	2	3	5	2	5	6	4	3	4	2	39
2	Torrenticola tetraporella	0	0	0	0	0	2	6	8	4	3	2	25
3	Torrenticola semisuta	0	0	0	0	0	5	7	9	11	9	4	45
4	Monatractides garhwalensis	4	6	10	5	4	6	5	7	5	6	7	65
5	Monatractides oxystomus	0	0	0	0	0	1	1	6	7	5	4	24
6	Monatractides tuzovskyi	0	0	0	0	0	5	9	11	6	4	5	40
7	Sperchon indicus	4	7	6	4	5	2	7	4	10	2	4	55
8	Sperchon clupeifer	0	0	0	0	0	0	6	10	1	1	1	19
9	Sperchon garhwalensis	1	2	2	3	1	1	2	4	2	3	1	22
10	Atractides nodipalpis	0	0	0	0	0	2	6	12	14	5	2	41
11	Atractides indicus	0	0	0	0	0	0	2	2	8	3	0	15
12	Atractides Garhwali	0	0	0	0	0	3	5	7	9	1	0	25
13	Atractides panesari	0	1	2	4	2	0	0	0	0	0	0	9
14	Hygrobates gangeticus	0	0	0	0	0	4	5	6	1	0	0	16
15	Hygrobates fluviatilis	0	0	0	0	0	7	12	21	19	17	14	90
16	Kongsbergia indica	0	0	0	0	0	2	5	3	14	2	4	30
17	Kongsbergia rucira	0	0	0	0	0	3	2	13	4	4	1	27
18	Aturus fontinalis	0	0	0	0	0	0	3	2	1	1	0	7
19	Arrenurus kurtvietsi	0	0	0	0	0	5	6	11	7	4	2	35
20	Arrenurus fontinalis	0	0	0	0	0	1	5	8	3	4	3	24
21	Feltria gereckei	2	4	6	5	2	0	0	0	0	0	0	19
22	Feltria rubra	0	3	2	0	0	0	0	0	0	0	0	5
23	Lebertia glabra	3	5	17	14	5	0	0	0	0	0	0	44
24	Limnesia lembangensis	0	0	0	0	0	1	2	5	6	1	0	15
25	Unionicola affinis	0	0	0	0	0	0	2	2	1	1	1	7
	Total	17	30	49	40	21	55	104	155	136	80	57	743

In the present work, diel periodicity of aquatic mites drift showed a distinctive pattern with high drift density values by dawn and decrease in drift through dusk.

Atractides panesari, Feltria gereckei, Feltria rubra and Lebertia glabra exhibited nocturnal drift while species Torrenticola turkestanica, Monatractides garhwalensis, Sperchon indicus and Sperchon garhwalensis exhibited both diurnal and nocturnal drift whereas rest of the all species Torrenticola tetraporella, Torrenticola Monatractides semisuta. oxystomus, Monatractides tuzovskyi, Sperchon clupeifer, Atractides nodipalpis, Atractides indicus, Atractides garhwali, Hygrobates gangeticus, Hygrobates fluviatilis, Kongsbergia indica, Kongsbergia rucira. Aturus fontinalis, Arrenurus kurtvietsi, Arrenurus fontinalis, Limnesia lembangensis and Unionicola affinis exhibited diurnal drift during the course of the study.

This characteristic diel drift pattern had been explained in relation to different ecological conditions like visual predation, mites life histories and physico-chemical responses. It is assumed that it is an adaptation to avoid predation by visual macro predators such as fries. carnivorous fish crabs and macrozoobenthos. Our observations corroborates with similar other studies that have correlated drift with predator presence (Allan, 1978 and Flecker, 1992). The diurnal drift periodicity and high aquatic mites drift density might reflect interspecific relations between invertebrates and macro consumers. According to predation hypothesis by Flecker (1992) and Allan and Castillo (2007), benthic invertebrates

would be more active during night hours due to the presence of diurnal predators.

Drift sampling techniques provided important and often complementary information on stream mites diversity. The present work showed distributional as well as drifting pattern of mites in snow fed river Alaknanda. As water mites act as good bio indicators; the appearance of *Hygrobates fluviatilis* stipulated that the water quality was degraded due to pollution or human activity as this species is considered as one of the pollution tolerant species.

Acknowledgements

The First Author (PB) gratefully acknowledges the financial assistance rendered by Science and Engineering Research Board (SERB) as a major Project F. No.–ECR/2016/001291.

References

- Allan, J. D. (1978). Trout predation and size composition of stream drift. *Limnology Oceanography*. 23: 1231-1237.
- Allan, J. D. and Castillo, M. M. (2007). Stream ecology. Structure and function of running waters. 2nd edition, Dordrecht Springer, pp.436.
- Bahuguna, P., Negi, S. and Dobriyal, A. K. (2019). Density and diversity of aquatic mites in a spring fed stream of Garhwal Himalaya, India. Journal of Mountain. Res. Vol. 14(2): 55-59.
- Bahuguna, P., Joshi, H.K. and Kumar, K. (2019). A report on drifting behaviour of odonata (aquatic insects) in Kyunja Gad, a spring fed tributary of River Mandakini, Chamoli Garhwal, Uttarakhand. *Journal of Mountain Research* Vol. 14(2): 63-67.
- Bahuguna, P., Rana, K. K., Rayal, R. and Khanduri, N. C. (2020). Density and diversity of aquatic mites in a glacierfed River Alaknanda from Garhwal Central Himalaya, India. *Uttar Pradesh Journal of Zoology*, Vol.41(10): 1-8.
- Bahuguna, Pankaj and Dobriyal, A. K. (2020). Population structure and drifting pattern

of aquatic mites in Randi Gad, a tributary of River Alaknanda in Garhwal Himalaya, Uttarakhand, India. *J. Mountain. Res.* Vol. (15): 63-70.

- Biesiadka E. and Kowalik W. (1991). Water mites (Hydracarina) as indicators of trophy and pollution lakes. In: Dusbabek F, Bukva V. eds, *Modern Acarology*. Academia Prague, V, 1:475–481.
- Chaston, I. (1968). Endogenous activity as a factor in invertebrate drift. *Arch. Hydrobiology* 64, 324-34.
- Cicolani, B. and Di Sabatino, A. (1991). Sensity of water mites to water pollution. In: Dusbabek F, Bukva V. eds, *Modern Acarology*. Academia Prague, V, 1:465– 474.
- Cook, D. R. (1967). *Water mites from India*. Memoirs of the American Entomological Institute, 9: 1–411.
- Cook, D. R. (1974). *Water mite genera and subgenera*. Memoirs of the American Entomological Institute, 21: 1-860.
- Elliott, J. M. (1970). Diel changes in invertebrate drift and the food of trout *Salmo trutta* L. *Journal of Fish Biology*.2: 161-165.
- Flecker, A. S. (1992). Fish predation and the evolution of invertebrate drift periodicity, evidence from Neotropical streams. *Ecology*. 73: 438-448.
- Gerecke, R. (2003). Water mites of the genus Atractides Koch, 1837 (Acari: Parasitengona: Hygrobatidae) in the western Palaearctic region: a revision. Zoological Journal of the Linnean Society, 138: 141-378.
- Graesser, A. K. (1988). Invertebrate drift in three floodprone streams in South Westland, New Zealand. Verhandlungen Internationale Vereinigung fur theoretische und angewandte Limnologie, 23: 1422-1426.

- Kowalik, W. and Biesiadka, E. (1981). Occurence of water mites (Hydracarina) in the river Wieprz polluted with domestic-industry sewage. *Acta Hydrobiologica* 23:331–348.
- Kumar, N., Kumar, K., Kumar, S. and Pesic, V. (2006). Monatractides tuzovskyi sp. nov. (Acari: Torrenticolidae), a new water mite species from the Garhwal Himalayas (India). *Acarina*, 14(2): 81– 83.
- Kumar, N., Kumar. K. and Pesic, V. (2007). Two new species of Sperchon Kramer (Acari: Hydrachnidia: Sperchontidae) from the Garhwal Himalayas (India). Systematic and Applied Acarology, 12: 31–36.
- Martin, P. and Brinkmann, R. (2003). Zur Eignung der Wassermilben als Bioindikatoren Fließgewässernin vorläufige Befunde Badenaus Württemberg. Tutzing: Deutsche Gesellschaft für Limnologie (DGL) -Tagungsbericht 2002 (Braunschweig), : 413-418.
- Martin, P. and Brunke, M. (2012). Faunal typology of lowland springs in northern Germany. *Freshwater Science* 31:542– 562.
- Namdari, R., Vafaei, Shoushtari R. and Shakarami, J. (2014). Review article: Faunistic survey and distribution of water mites (Acari: Hydrachnida) in Khorramabad district. Journal of Entomological Research, Vol. 5: 403 -413.
- Negi, S., Bahuguna, P. and Dobriyal, A.K. (2021b). Drifting behaviour of aquatic mites and regulating ecological parameters in Khankra gad stream, a spring fed tributary of Alaknanda River, Rudraprayag Garhwal, Uttarakhand,

DOI:<u>https://doi.org/10.51220/jmr.v17i1.20</u>

.

India. J. Mountain. Res. Vol. 16(1): 61-75.

- Negi, S., Dobriyal, A. K. and Bahuguna, P. (2021a). Biodiversity and monthly density fluctuations of water mites in Khankra gad, a spring-fed tributary of river Alaknanda, Pauri Garhwal, Uttarakhand. Journal of Applied and Natural Sciences. Vol.13 (1): 258-267.
- Pesic, V. and Panesar, A. (2008). Studies on water mites (Acari: Hydrachnidia) from the Himalayas, I. The water mites genus Feltria Koenike, with description of eight new species. *Zootaxa*, 2119:1-22.
- Pesic, V., Kumar, N. and Kumar, K. 2007a. Two new species of water mites of the family Hygrobatidae (Acari: Hydrachnidia) from the Garhwal Himalayas (India). *Systematic and Applied Acarology*, 12: 161–166.
- Pesic, V., Kumar, N. and Kumar, K. 2007b. A new species of Monatractides (Acari: Hydrachnidia: Torrenticolidae) and new records of other torrenticolid water mites from the Garhwal Himalayas (India). Systematic and Applied Acarology, 12(3–4): 205–212.
- Pesic, V., Smit, H. and Bahuguna, P. (2019a).
 New records of water mites (Acari: Hydrachnidia) from the Western Himalaya with the description of four new species. *Systematic and Applied Acarology*, 24(1): 59–80.
- Pesic, V., Smit, H. and Bahuguna, P. (2019b).
 New records of water mites (Acari: Hydrachnidia) from the Western Himalaya and description of three new species from Asia. *Systematic and Applied Acarology*, 24(10): 1868–1880.
- Pesic, V., Smit, H. and Bahuguna, P. (2020a). A new species of *Kongsbergia* from the Western Himalaya with a key to the species of the genus of India (Acari:

Hydrachnidia). Ecologia Montenergrina, 27: 35-38.

- Pesic, V., Smit, H., Negi, S., Bahuguna, P. and Dobriyal, A. K. (2020b).Torrenticolid water mites of India with description of three new species (Acari: Hydrachnidia, Torrenticolidae). *Systematic & Applied Acarology* 25 (2):255-267.
- Prasad, V. (1974). *A catalogue of mites of India*. Indra Acarology Publishing House, Ludhiana, 1-320pp.
- Wolcott H. (1905). A Review of the Genera of the Water-Mites. *The American Microscopical Society*, Vol. 26: 161-243.
- Zawal A. (1992). Water mites (Hydracarina) of three small lakes in the neighbourhood of Poznań. *Acta Hydrobiologica* 34: 157-174.
- Zawal A. (2003). The role of insects in the dispersion of water mites. *Acta Biologica* Universitatis Daugavpilensis 3:9–14.