
J. Mountain Res. P-ISSN: 0974-3030, E-ISSN: 2582-5011         DOI: https://doi.org/10.51220/jmr.v16i3.11  

Vol. 16(3), (2021), 99-110 
   

 

©SHARAD         WoS Indexing 99 

A Review on Black hole solutions in General Relativity  

Monika Sati1 • K.C. Petwal2 

1Department of Mathematics, H.N.B. Garhwal University (A Central University), S.R.T Campus Badshahithaul, 

Tehri Garhwal, Uttarakhand, India 

 

*Correspondence author: monikasati123@gmail.com 

 

Received: 28.6.2021; Revised: 10.11.2021; Accepted:20.11.2021 

 

Abstract: In the present manuscript, we endeavour to review and developthe black hole solutions in general 

relativity. We emphasizehere the Schwarzschild solution in Einstein’s field equation, which describes the 

gravitational field outside a spherical mass. The paper aims to obtain certain results, including the description of 

the Einsteinfield equationwith stationary and static solutions and components of the metric that turns out to be 

timeindependent, some experiments on the Schwarzschild - Penrose diagram, theKerr-Newman solution for 

rotating black holes, and the Reissner- Nordstrom solution for static and charged black holes.  
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Introduction 

Einstein's gravitational principle is expressed in a deceptively simple-looking tensor equation (scalar 

and vector generalization) that describes how a mass defines the curvature of spacetime around it. 

One of the most interesting findings is the solution to the equation: the black hole. The hypothesis 

states that if an object is dense enough, it will collapse in on itself and be surrounded by a continuum 

of events from which nothing can escape [5]. The term "black hole", invented by astronomer John 

Wheeler in 1969, refers to the fact that light cannot escape such an object. Karl Schwarzschild was the 

first to mention this phenomenon in 1916, but at that time it was mainly considered a novelty in 

mathematics. 

According to Newton’s theory of gravity, the escape velocity  from a distance  for the center of 

gravity of a heavy object of mass  is: 

    ,      (1.1) 

Where  is the gravitational constant. What happens if a body with a large mass  is so compact that 

the escape velocity from its surface exceeds that of light, or,  There are bodies of mass  and 

radius  for which holds [1]. 

         (1.2) 

John Mitchell had already raised this question in 1783. In 1796, the case was further investigated by 

Pierri Simon de Laplace. Do light rays fall back on the surface of an object in this way? Only light 

cannot disappear in space, one might think. Later it was conjectured that it could to escape anyway 

because of the wave nature of light. 
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Now we know that such simple assumptions are fallacious. To understand what happens to these 

extremely heavy objects, one must consider Einstein's theory of relativity [1], both Special Relativity 

and General Relativity, the theory that defines the gravitational field when velocities are generated 

compared to those of light. Soon after the formulation of this beautiful theory by Albert Einstein, it 

was realized that his equations have closed solutions. One naturally first tries to find solutions with 

maximum symmetry, which the radially symmetric case. For later more general solutions with less 

symmetry were also found. However, these solutions had some features that were difficult to 

understand at first. Singularities seemed impossible to recognize as physical phenomena until it was 

discovered that at least some of these singularities were due only to externalities. Upon closer 

examination, it turned out what their true physical nature was. It turned out that a space traveller could 

go all the way in such a ''thing'' but would never return, at least in principle. In fact, even the light 

from these solutions would not exit the central area. It was John Archibold Wheeler who called these 

strange things “black holes”. Einstein was not satisfied with this. Like others at first, he assumed that 

these unusual properties were due to poor, or at least incomplete, physical perception. Those crazy 

black holes will go down all right, he thought to himself. But his equations are much better 

understood today. Not only do we accept the existence of black holes, but we also understand how 

they can form under different circumstances. The theory helps quantify the behaviour of material 

objects, surfaces, or other factors near or beyond a black hole. Moreover, astronomers have now 

found several bodies in the universe that are completely consistent with the theorists' thorough 

explanations. These objects can only be interpreted as black holes, like everything else [5]. 

The “astronomical black holes'' display no clash with other physical laws at all. Indeed, under intense 

circumstances, they've become a rich source of information about physical phenomena. General 

Relativity itself can now also be examined to great precision. Astronomers find that black holes would 

only form from regular stellar bodies. If they contain a minimum mass, becoming process is known 

for low mass black holes, and indeed no indications have been found that black holes exist anywhere 

in the universe much lighter than this "Chandrasekhar limit''[2]. 

One of the most important findings of the theory of General Relativity is the presence of black holes. 

Also if certain elements of black hole physics can be drawn from Newtonian theory, the entire idea of 

black holes requires the application of an event horizon and a traditional relativistic principle causal 

mechanism. 

Maybe we are close to a definite discovery of black holes, and there is an abundance of data on black 

holes. Within General Relativity, there are four most well-known black hole solutions: the uncharged 

static black hole provided by the Schwarchild solution, the charged static black hole; the Reissner- 

Nordstrom solution; the uncharged black hole, the Kerr solution and the revolving black hole, the 

Kerr- Newman solution [9]. 
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The characteristics of these solutions led to the so-called no- hair conjectures: in general, only three 

parameters in Einstein-Maxwell theory mass , charge  and angular momentum  must be 

characterized by black hole; however, additional parameters relating to new charges are applied as 

more gauge fields are taken into account as happens, for example,  for Lagrangian induced by string 

theory, other parameters such as magnetic monopole charges can also occur when taking into account 

other general gauge fields. There is clear proof that in some cases this hypothesis can be broken, in 

particular when considering new outlets such as scalar fields- see Herdeiro et al contributions [13]. 

Now, we described the black hole solutions in our result which is as follows: 

 

Schwarzschild solution for Static Blackhole 

The Schwarzschild solution is the solution to Einstein Field Equation (EFE) that describes the 

gravitational field outside a spherical mass. In 1916 Karl Schwarchild found that the spherical rotation 

of the black hole is static means the electric charge and angular momentum of the mass and 

cosmological constant all are zero. It means that the uncharged static black hole is a black hole that 

has neither electric charge nor angular momentum. In the Schwarchild matric, the rotation of the black 

hole is stationary. A Schwarzschild black hole is described by the Schwarzschild metric(Carmine 

Cataldo, (2017). 

Let us consider the spherical symmetry whose coordinates are  the usual static solution is 

described by the line element 

 

(2.1) 

Here A and B are asymptotically flat co-ordinate which is denoted by  and  is the 

static spherically symmetric metric. 

From the eq. (2.1) the metric tensor is follows 

     (2.2) 

     (2.3) 

Let we infer the Christoffel symbol, we have 
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     (2.4) 

If the indices are oriented from 0 to 3, then 0 stands for t, 1 stand for r, 2 stands for  and 3 stands for  

 

Now, if we put , then from equations (2.2),(2.3) and (2.4), we get 

        (2.5) 

If  then all the other symbols are vanishing. 

If we put  then from equations (2.2), (2.3) and (2.4) 

   (2.6) 

If , then all the other symbols are vanishing. 

If we put  , then from equations (2.2), (2.3) and (2.4), we get 

       (2.7) 

If , then all the other symbols are vanishing. 

If we put , then from equations (2.2), (2.3) and (2.4), we get 

       (2.8) 

If , then all the other symbols are vanishing. 

Now, let us infer the components of the Ricci tensor 

      (2.9) 

We get all the components are non-vanishing, now from the equations (2.2), (2.3) and (2.9) 

If , we get 

      (2.10) 

If , we get 

      (2.11) 

If , we get 

       (2.12) 

If , we get 

    (2.13) 

Further, now we can write the EFE as follows 

        (2.14) 

Here R intimates the Ricci tensor and  intimates the stress-energy tensor and  intimates the 

metric tensor. 

If we consider the mass which has neither matter nor energy, then Einstein tensor must vanish. 

Consequently, we have 
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         (2.15) 

From equation (2.15) the Einstein tensor and Ricci tensor both are trace reverse to each other, we have 

          (2.16) 

From equations (2.10), (2.11) and (2.12), we get 

      (2.17) 

      (2.18) 

Now, if we dividing the equation (2.17) and (2.18), we get 

         (2.19) 

          (2.20) 

is the constant, the solution will be asymptotically flat, if we use the Minkowski space for , 

then we interpolate the boundary conditions. 

      

 (2.21) 

From (2.20) taking for (2.21), we get 

          (2.22) 

         (2.23) 

Put  in equation (2.12) and from equation (2.12) and (2.16) 

      (2.24) 

      (2.25) 

         (2.26) 

It is worth noting that, we could already infer the original Schwarchild solution [9], without defining 

any particular value of the constant . 

If we intimate with  the Newtonian potential, we can write 

  ,     (2.27) 

Where  is the Newtonian constant of gravity, c is the velocity of light and M is the point mass at 

the origin 

Now from (2.26) and (2.27), we have 

          (2.28) 

and from (2.22) and (2.27), we get 

         (2.29) 

With the help of equations (2.27) and (2.29), we get a metric 
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Here, we show that the metric appearance to have a singularity of the Schwarzschild radius 

 . The above equation can also be written as 

  (3.30) 

Here,  has a glaring singularity at  and co-ordinate  has range . 

The above solution is the unique solution of vacuum EFE. Which is describes the vacuum space-time 

outside a spherically symmetry object of mass M. While this object could have a time-dependent mass 

distribution and the external space-time is necessarily static and its metric is given by equation (2.30), 

so the equation (2.30) is the Schwarchild static matric. Further, the Schwarzschild metric is static if 

the intellect that, ∇ is a timelike Killing vector which is gradient. Here,  is a time-independent 

component of metric . Also, in equation (2.30), there are no mixed terms involving both space and 

time. Hence there is no rotation inherent in space-time. 

Now, we discuss here briefly the EFE have stationary and static solutions. If the time doesn’t enter 

explicitly in the metric potentials, then the solution is called stationary. In such a case, the components 

of metric will be time-independent then the co-ordinate system will existi.e., if  is the time like co-

ordinate 

   .      (3.31) 

In this coordinate system, the Lie derivative  and we define the vector i.e., Lie 

derivative vanishes in all co-ordinate systems for the Killing vector .On the other hand, if the space-

time assumes a time like Killing vector field, then it is possible to choose a coordinate system adapted 

to it such that . Then the metric is again stationery andspace-timeare called stationary if and 

only if it admits the existence of a time likeKilling vector fields. 

We note that if space-time is stationary, it does mean that the components of metric cannot develop in 

time. It is just that the time doesn’t enter clearly in the solution. However, the stronger requirement of 

staticity means that there is no time evolution of the system, which is time-symmetric about any origin 

of time. In such a way, one would expect that in the co-ordinate system conditioned to the time like 

Killing vector field, the metric would accept no cross-terms as well such a way under a time-reversal 

, the sign of those elements of  containing the cross terms in  will be reversed. 

However, the stativity assumption means that the  must remain invariant under the  about 

any origin of time. This implies that the cross terms must vanish in the manifestation of . Hence a 

static solution of space-time is classified by the existence of a time like vector  Killing vector field 
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for the space-time, and the additional requirement that in the co-ordinate system conditioned to this 

vector field the components of metric are time-independent and no cross-terms appear in the line 

element  . Hence asdiscussed above, the Schwarzschild metric (3.30) is the solution of the vacuum 

EFE with the assumption of spherical symmetry in space-time. It is glaring that the coordinate system 

 provides a frame in which the metric is time-independent. So, the equation (3.30) is the 

static or stationary solution.  

Kerr-Newman Solution for Rotating Black Hole 

As stated in the previous section, the final configuration resulting from a complete spherically 

symmetrical gravitational collapse is defined by the Schwarzschild geometry in the exterior of the 

collapse dust cloud configuration as solutions to the Einstein equations. Even if the collapse is non-

spherical and the geometry outside is time-independent on would expect the geometry to settle to a 

stationary final state in the end. Further, Ali celestial bodies rotate, and the resulting solution will not 

be assumed to be precisely spherically symmetrical. The Kerr space-time integrates these features and 

models the external geometry around a spinning body as well as a black hole that rotates (Kerr, 1963). 

The metric is written in the Boyer-Lindquist (1967) co-ordinates  as [6] 

  (3.1) 

 Where       (3.2) 

Here m is the gravitational mass parameter of the body and J represents the total angular momentum 

of space-time i.e., or , it is the per unit mass angular momentum of an object. 

        (3.3) 

       (3.4) 

So, one can see here that there are two parameters M and on which the black hole depends if we 

put  then the black hole metric reduces to the Schwarzschild metric, as one can see as r goes to 

infinity, we encounter the following metric tensor approximately 

 (3.5) 

Where M is a mass because it was out this term this just reduces to the same form as a Schwarchild 

does it reduce because this when  this reduces to Schwarchild, so M is a mass and a is the 

presence of this term of equation (3.1) because it the presence of this metric although it invariant 

under the time translations  but it is not invariant under the time-reversal  exactly 

because of the presence of this term of equation (3.1) this term makes this metric stationery but not 

static(Eva Hackmann,2010). So, its components of the metric are time-independent but there are non-

diagonal terms. This term is correspondence to the rotational terms. So, the space-time describes the 

rotation so  the physical meaning of  is momentum attributed for angular momentum per unit 

mass. 
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Now, let us see with this metric has a horizon or not, first of all, to do that explicitly to see Penrose 

diagram 

 

Fig 3.1 Newman-Penrose diagram 

For  metric, the Schwarchild case for equation (3.2) if  

  

  

Two solutions of this equation are 

     (3.6) 

As we can see   (Schwarzschild radius), here is the radius of the horizon. 

Now, on the way to see the Penrose diagram for this solution and another way to see that is 

considering normal vector for this surface(Pankaj S. Joshi, 1993). 

  , .  

This is the horizon because of the escape of this surface so this is an invariant horizon. 

 

Fig 3.2 The Stationary unit surface and event horizon in Kerr solution with  

 If we vanish the term  from the equation (3.1) then the solution of this term is  

       (3.7) 

https://doi.org/10.51220/jmr.v16i3.11
http://jmr.sharadpauri.org/
https://mjl.clarivate.com/search-results?issn=0974-3030


J. Mountain Res. P-ISSN: 0974-3030, E-ISSN: 2582-5011         DOI: https://doi.org/10.51220/jmr.v16i3.11  

Vol. 16(3), (2021), 99-110 
   

 

©SHARAD         WoS Indexing 107 

  

We counted the following situation now, the real solution for equation (3.7) . In a real 

situation during the collapse, one can’t create such an object with  

When  is called a critical situation. More generally its states that one during real, physical 

situation one can't create space-time which is a singularity that is not surrounded by the horizon.   

Let us explained that on the Schwarchild Penrose diagram it can be seen. If we have anyone who has 

stayed very close to the black hole horizon it can stay fixed at the fixed radius and if some seeing 

inside the black hole creates radiation some craze motion like masses or charges any radiation will go 

to torque singularity it will not go outside of this surface. So, their Schwarchild horizon is the horizon 

of the black hole in the surface of infinite redshift.  

Let us study it from a collapse if we have a collapse where the matter of the black hole falls down the 

creation of their horizon for approaches its horizon and during the collapse process is happening so 

many singularities exist but as Schwarchild solution it very closed to the horizon. 

Suppose you have an Electromagnetism you have an ideal sphere which is homogeneous with 

distributed electric charge over it this sphere is breathing so it like goes outside and so we shrink and 

expand respecting spherical symmetry and homogeneity of the charge distribution independently of 

the radius of this sphere it always creates outside of its coulomb field so the electric field is not zero 

but a magnetic field is zero. So, it means that such a sphere even though the charges are moving with 

acceleration in the motion. This breathing sphere never creates electromagnetic radiation also it of 

field its known by those who are building antennas they know that spherically symmetric antenna 

cannot be created so that is related to the fact that to have electromagnetic radiation you have to have 

dipole moment changing in time while for the breathing sphere dipole momentum with respect to its 

centre is always zero and actually all multiple momentum with respect to its centre as zero so similar 

situation we have in gravity and even more defined in the sense that spherically symmetric mass when 

it breezes doesn’t create gravitational radiation because outside of it in Newton gravity creates 

Newton fields in Einstein gravity it creates due to Birkoff theorem and create Schwarchild field so 

these are very interesting situations so during collapse process everything that can be radiated it ready 

that remains in the object which is characterized only by three charges by mass, angular momentum 

and electric field by electric charge(Pankaj S. Joshi,1993).. So, these are the only charge which cannot 

create electromagnetic or gravitational radiation all the rest of the multiple momenta can create 

radiation and they are radiated so this fact in the bases of the no-hair theorem in the absence of the 

electric field when we don't have this, we have the solution which is characterized only by two 

parameters by mass and angular momentum as a result of the collapse process that is a statement of 

the no-hair theorem. 
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Reissner-Nordstrom Solution for Static and Charge Blackhole 

The final condition of a complete gravitational collapse, either spherically symmetrical or non-

spherically symmetrical, is considered to be a space-time vacuum containing the rotation and 

probably also the electromagnetic fields associated with the body. The charge associated with an 

astrophysical object may be quickly neutralized by the surrounding plasma. In any case, however, it 

would be of interest to obtain Ali solutions to Einstein-Maxwell equations which could explain with 

charge stationery collapsed configurations. The charged generalization of Schwarchild geometry is 

called the Reissner-Nordstrom metric, describing the space-time outside of a spherically symmetrical 

electrically charged body. This is a static and asymptotically charged solution of the Einstein-

Maxwell equations . Here  is the trace free; Maxwell energy-momentum tensor  

satisfies the Maxwell equation in the source-free region [3]. 

For the metric coordinates  is written as follows 

  (4.1) 

The above metric is the Reissner-Nordstrom metric. This is a time-independent and spherically 

symmetric metric. 

Here M is the gravitational mass and q is the electric charge of the body. The  energy stress tensor 

doesn't vanish anymore. The exterior represented by this solution but corresponds to the 

electromagnetic field in space-time resulting from the charge of the body. Here we can again establish 

an analogy with Birkoff’s theorem, namely, this is the spherically symmetrical solution of the 

Einstein-Maxwell equations. It's always unchanged.  

If a local orthonormal bases generated 

       (4.2) 

       (4.3) 

         (4.4) 

         (4.5) 

An observer that is stationary to the co-ordinate system then sees the outward-pointed observant (4 -

velocity )  magnitude electric field . The strength of the electromagnetic field is 

  , all other components are zero.    (4.6) 

  , other components are zero     (4.7) 

The efficiency of the Reissner- Nordstrom solution is based on the relationship between electric 

charges Q and the mass M. define the function 
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, we can see that: 

i. If , then  has two zeroes at . The exterior feels 

qualitatively close to the outside Schwarchild space-time. In particular, if we take , then 

the uniqueness of the outermost co-ordinates occurs at  

ii. If , then all is well done at positive . The central singularity at 

 (which is, like, in Schwarchild, there is a physical singularity) visible to the outside 

world as a naked singularity.  

 

Conclusion 

Here is the brief outline of the outcomes of 

the proposed research work:  

1. In the introductory section, we give Newton 

theory of gravity, Einstein’s special and 

general theory of relativity, and some 

fundamental aspects and discovery of well-

known black hole solutions. 

2. In the second section, we use the 

Schwarzschild metric, some tensors like Ricci 

tensor and Einstein tensor,and study 

Schwarchild solution for the static black hole. 

With the help of this, we describe that the 

Einstein field equation has stationary and 

static solutions and components of metric will 

be time-independent. 

3. In the third section, we describe the Kerr-

Newman solution for rotating black hole and 

show that there are two parameters M and on 

which the black hole depends if we put  

then the black hole metric reduces to the 

Schwarchild metric. In Schwarchild Penrose 

diagram we see anyone who has stayed very 

close to the black hole horizon can stay fix at 

the fixed radius and if some seeing inside the 

black hole creates radiation some craze motion 

like masses or charges by radiation will go to 

torque singularity. 

4. The Fourth section emphasis Reissner- 

Nordstrom solution for static and charge black 

hole and define the relationship between 

electric charges Q and the mass M. 
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