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Introduction 

A linear indeterminate equation is an equation 

in two variables with integer coefficients when 

the solution is found in integers (or sometimes 

rational numbers). This problem was first 

discussed by Diophantus (c. 250 AD) (a Greek 

mathematician from Alexandria), who was 

interested only in finding the rational roots of 

such equations (Clark 1930). The equation 

 
    (1.1) 

is a linear indeterminate equation. Here, a, b 

and c are positive integers, x and y are integer 

roots of the equation. Equation (1.1) played an 

important role in the calculation of Ahargaṇa 

(the number of days that elapsed from a given 

epoch) from the mean longitudes of planets 

and lunar eclipses in Indian astronomy (Gupta 

1974, 1986; Kak 2003, 2004, 2005; Shukla 

1976). In modern times, it is useful in serious 

fields, including cryptography. 

Ᾱryabhaṭa (499 AD) was the first Indian 

mathematician who drew attention to solving 

these equations for integer roots. The 

Ᾱryabhaṭa method for solving linear 

indeterminate equations are traditionally 

knows as Kuṭṭaka or pulverizer method. 

Bhāskara I (c.598 AD), Brahmagupta (628 

AD), and others did various refinements to 

solve linear indeterminate equations 

(Ayyangar 1926; Dutta 2002; Datta and Singh 

2004; Joseph 2010). Kak (1986) nicely 

elaborated on computational aspects of the 

Kuṭṭaka method, such as solving for pairs of 

linear congruences under different moduli and 

designated as Ᾱryabhaṭa algorithm. Bag (1977, 

2017) discussed the solution of the 

indeterminate equation purposed by Ᾱryabhaṭa 

in terms of continued fractions, suggesting that 

the Ᾱryabhaṭa algorithm is similar to the 

general method of continued fractions, which 

was later discovered by the European scholars 

Bombelli and Cataldi (2018) in 1598. Rao and 

Young (2006) published an analysis of the 

Ᾱryabhaṭa algorithm to find the multiplicative 

inverse of a group modulo a prime as well as 

the solution to multiple congruences, which 

has various applications in cryptography, 
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signal processing, coding, and computer 

design. 

1.0 Objectives of the Study 

This article presents a brief introduction to the 

Ᾱryabhaṭa algorithm. In addition, it aims to 

improve Ᾱryabhaṭa algorithm for solving 

linear indeterminate equations. In particular, 

the study aims to develop an iteration formula 

for this algorithm (taking into account 

negative numbers) for solving linear 

indeterminate equations. The algorithm 

presented here differs from the traditional 

commentaries but seems consistent with the 

original (cryptic) description. Additionally, a 

few algorithmic applications are shown, and a 

couple of examples are used to validate the 

results. 

Methodology 

The methodology employed in this study 

consists of the analytical reconstruction and 

enhancement of the classical Āryabhaṭa 

algorithm for solving linear indeterminate 

equations. Initially, the traditional Kuṭṭaka 

(pulverizer) method was explicated through 

historical and mathematical analysis, 

referencing original Sanskrit formulations and 

their modern interpretations. Subsequently, an 

improved algorithm was developed using a 

recursive structure, incorporating the nearest 

integer function to optimize successive 

divisions and account for negative remainders. 

To validate the effectiveness of both the 

traditional and improved algorithms, a series 

of Diophantine equations and congruence 

relations were systematically solved. The 

results obtained were tabulated and compared 

in terms of computational steps required. 

Particular focus was given to demonstrating 

the algorithm’s efficiency in calculating 

modular inverses—a key operation in modern 

cryptography. Examples were chosen to 

illustrate not only correctness but also the 

reduction in complexity and execution steps. 

 

 

2 Ᾱryabhaṭa 

Ᾱryabhaṭa (b. 476–550 AD) was born in 

Kusumpura (near Patna), a pioneer 

mathematician and astronomer known for his 

systematic collection and systematisation of 

knowledge. His contributions to mathematics 

were significant and laid the foundation for 

many subsequent developments in Indian 

mathematics. He authored the famous text 

Āryabhatīya: an algebraic treaty on 

mathematics and astronomy (Gupta 1977; 

Hayashi 2003; Shukla 1976). 

2.1 The Ᾱryabhaṭa Problem 

Problem 2.1. Suppose a number N which 

being divided by given two integers ( , )a b  will 

leave two given remainders 1 2( , )r r . 

1 2N ax r by r= + = +   or ax by c− = ,  

2 1.c r r= − . 

another form of given pair of residues as 

suggested by Kak (1986). 

(mod )i iX m x=  for 1,2i = . 

The primary purpose is to find positive integer 

solutions to the above equations. 

2.2 The Ᾱryabhaṭa Algorithm 

Ᾱryabhaṭa discussed the solution of the above 

problems in cryptic verses 32 and 33 (Gaṇita 

Section) of Āryabhatīya. The translation of 

these verses by Datta and Singh (2004) 

follows the interpretation of Bhāskara I. 

 
2.2.1 Translation 

“Divide the divisor corresponding to the 

greater remainder by the divisor corresponding 

to the smaller remainder. The remainder (and 

the divisor corresponding to the smaller 

remainder) being mutually divided, the last 

residue should be multiplied by such an 

optional integer that the product being added 

(in case the number of quotients of the mutual 

division is even) or subtracted (in case the 

number of quotients is odd) by the difference 
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of the remainders will be exactly divisible by 

the penultimate remainder. Place the quotients 

of the mutual division successively, one below 

the other, in a column; below them is the 

optional multiplier, and underneath it is the 

quotient just obtained. Any number below 

(i.e., the penultimate) is multiplied by the one 

just above it and then added to the one just 

below it. Divide the last number (obtained by 

doing so repeatedly) by the divisor 

corresponding to the smaller remainder; then 

multiply the remainder by the divisor 

corresponding to the smaller remainder and 

add the greater remainder. The result will be 

the number corresponding to the two divisors.”  

Following the above translation, the algorithm 

starts with successive divisions of greater 

integer to the smaller integers. The successive 

quotients and remainders will obtain using the 

recursive formula: 

2

1

i
i

i

r
q

r

−

−

 
=  
 

 and 2 1 ,i i i ir r r q− −= −  1 i n  , 

(2.1) 

assuming 1b r−=  and 0 ( )a r b a=  . 

The work consists of some steps, represented 

by the Table 2.1 given below. Now we explain 

the work further below. 

Table 2.1: Numerical Values 

i qi ai 

1 q1 a1 

2 q2 a2 

3 q3 a3 

. . . 

. . . 

n qn an 

n+1 qn+1 an+1 

n+2 qn+2 an+2 

Here are features of this table in detail: 

1. Column 2 contains the quotients 

obtained by equation (2.1). The last two 

elements (qn+1 and qn+2) are obtained by using 

formula 
1 2 1n n n nq r c q r+ + − =   taken in order, 

where positive and negative sign is taken 

according as the quotients (omitting the first 

one) obtained are even or odd.  

2. The element of column 3 will be 

obtained using the recursive formula 

1 2n n n na q a a+ += + ,   (2.2) 

3. Let a  and b  are fundamental solution 

of the above equation, then  

1(mod )a a b=  and 2 (mod )b a a= . (2.3) 

4. The general solution of the given 

equation is  

na a bn= +  and 0,nb b an n= +  .  (2.4) 

Remark 2.1. The quotients are obtained by 

dividing the divisor of the greater remainder 

by the divisor of the smaller remainder, and 

the process is repeated in a similar way until 

all the quotients are not obtained. This process 

is called Kuṭṭaka in Indian mathematics, and 

traditionally known as the Euclid division 

algorithm. Euclid (325-265 BC) gives his 

method to obtain the G.C.D of numbers a and 

b, which occurs in the Elements of Euclid 

[Thomas (1956)], but Euclid did not suggest 

anything about the solutions of the linear 

Diophantine equation. 

 

The rational and the genesis of the algorithm 

can be illustrated by taking some examples, 

given below: 

Example 2.1. Solve 23 63 7x y− = . 

Solution. Comparing ax by c− = , we have 

23, 63a b= =  and 7c = . 

Performing successive division of b by a and 

using (2.1), we get 

1

63
2

23
q

 
= = 
 

 and 
1 63 2 23 17r = −  = , 

2

23
1

17
q

 
= = 
 

 and 
2 23 1 17 6r = −  = , 

3

17
2

6
q

 
= = 
 

 and 
3 17 2 6 5r = −  = , 

4

6
1

5
q

 
= = 
 

 and 4 6 1 5 1r = −  = . 
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The column of quotients is 

2

1

2

1

 
 
 
 
 
 

. 

The number of quotients, omitting the first 

one, is 3, which is odd. Hence, we choose a 

multiplier such that on multiplication by the 

last remainder, 1, and subtracting 7 from the 

product, the result is divisible by the 

penultimate remainder, 5. If the number of 

quotients after omitting the first one is even, 

then adding 7 is required instead of 

subtracting. So, we have 1 12 7 5 1 − =  . 

Now, we formed the following Table 2.2 using 

the properties defined in Section 2.2. 

Table 2.2: Numerical Values 

i qi ai 

1 2 140 

2 1 51 

3 2 38 

4 1 13 

5 12 12 

6 1 1 

Explanation: Start with last two elements: 

6 6 1a q= =  and 5 5 12a q= = . The value 

obtained using the recursive formulas (2.2) is 

4 4 5 6 1 12 1 13a q a a= + =  + = . In the similar 

way, the values 3 238, 51a a= =  and 

1 140a =  are obtained. Hence, first positive 

solution using equation (2.3) is 

140(mod 63) 14a = =  and 

51(mod 23) 5b = = . The general solution is 

14 63na n= +  and 05 23 ,nb n n= +  , 

obtained by using (2.4). 

Example 2.2. Solve 23 63 1x y− = . 

Solution. Comparing with 1ax by− = , we 

have 

23, 63a b= =  and 1c = . 

The column of quotients is 

2

1

2

1

 
 
 
 
 
 

. 

The number of quotients, omitting the first 

one, is 3, which is odd. Hence, we choose a 

multiplier such that on multiplication by the 

last remainder, 1, and subtracting 1 from the 

product, the result is divisible by the 

penultimate remainder, 5. So, we have 

1 6 1 5 1 − =  . Now, we formed the following 

Table 2.3 using the properties defined in 

Section 2.2. 

Table 2.3: Numerical Values 

i qi ai 

1 2 74 

2 1 27 

3 2 20 

4 1 7 

5 6 6 

6 1 1 

 

Explanation. Start with last two elements: 

6 6 1a q= =  and 5 5 6a q= = . The value 

obtained using the recursive formula (2.2) is 

4 4 5 6 1 6 1 7a q a a= + =  + = . Similarly, the 

values 3 220, 27a a= =  and 1 74a =  are 

obtained. Hence, first positive solution using 

equation (2.3) is 74(mod 63) 11a = =  and 

27(mod 23) 4b = = . The general solution is 

11 63na n= +  and 
04 23 ,nb n n= +  , 

obtained by using (2.4). 

3 Improved Ᾱryabhaṭa Algorithm 

The Ᾱryabhaṭa algorithm starts with 

successive divisions of greater integer to the 

smaller integers to obtained quotient. We 

assigned nearest integer function to find 

successive quotients considering negative 

remainders in account. The successive 

quotients and remainders will obtain using the 

modified recursive formula. 
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2

1

i
i

i

r
q nint

r

−

−

 
=  

 
 and 

2 1i i i ir r r q− −= − , 

1 i n  . (3.1) 

assuming 1b r−=  and 0 ( )a r b a=  . where 

‘nint(x)’ is defined as follows: 

1 1
: 2

2 2
: (x)

1 1
: 2

2 2

x x

x R nint

x x

 
+  +    = 

 −  +


, 

where .    is the floor function. Next, we shall 

follow steps 1-4 mentioned in Section 2.2. 

The rational and the genesis of the algorithm 

can be illustrated by taking some examples, 

given below. 

Example 3.1 Solve 23 63 7x y− = . 

Solution: Comparing with ax by c− = , we 

have 

23, 63a b= =  and 7c = . 

Performing successive division of b by a and 

using (2.1), we get 

1 1

63
3,, 63 23 3 6

23
q nint r

 
= = = −  = − 

 
, 

1 2

23
4, 23 ( 6)( 4) 1

6
q nint r

 
= = − = − − − = − 

− 
. 

The column of quotients is 
3

4

 
 
− 

. 

The number of quotients, omitting the first 

one, is 1, which is odd. Hence, we choose a 

multiplier such that on multiplication by the 

last remainder, -1, and subtracting 7 from the 

product, the result is divisible by the 

penultimate remainder, -6. So, we have 

1 5 7 6 2.−  − = −   Now, we formed the 

following Table 3.1 using the properties 

defined in Section 2.2. 

Table 3.1: Numerical Values 

i qi ai 

1 3 -49 

2 -4 -18 

3 5 5 

4 2 2 

Explanation. Start with last two elements: 

4 4 2a q= =  and 
3 3 5a q= = . The value 

obtained using the recursive formula (2.2) is 

2 2 3 4 4 5 2 18a q a a= + = −  + = − . In the 

similar way, the value 
1 49a = −  is obtained. 

Hence, first positive solution using equation 

(2.3) is 49(mod 63) 14a =− =  and 

18(mod 23) 5b = − = . The general solution is 

14 63na n= +  and 
05 23 ,nb n n= +  , 

obtained by using (2.4). 

Example 3.2 Solve 23 63 1x y− = . 

Solution: Comparing with ax by c− = , we 

have 

23, 63a b= =  and 1c = . 

The column of quotients is 
3

4

 
 
− 

. 

The number of quotients, omitting the first 

one, is 1, which is odd. Hence, we choose a 

multiplier such that on multiplication by the 

last remainder, -1, and subtracting 1 from the 

product, the result is divisible by the 

penultimate remainder, -6. So, we have 

1 5 1 6 1−  − = −  . Now, we formed the 

following Table 3.2 using the properties 

defined in Section 2.2. 

Table 3.2 

i qi ai 

1 3 -52 

2 -4 -19 

3 5 5 

4 1 2 

Explanation. Start with last two elements: 

4 4 1a q= =  and 3 3 5a q= = . The value 

obtained using the recursive formula (2.2) is 

2 2 3 4 4 5 1 19a q a a= + = −  + = − . In the 

similar way, the value 1 52a = −  is obtained. 

Hence, first positive solution using equation 
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(2.3) is 52(mod 63) 14a =− =  and 

19(mod 23) 5b = − = . The general solution is 

11 63na n= +  and 
04 23 ,nb n n= +  , 

obtained by using (2.4). 

It is clear that the answers are obtained in least 

number of steps after applying the nearest 

integer function mentioned above for 

successive division. 

Conjecture 3.1 The Ᾱryabhaṭa algorithm 

provides integer solutions to linear 

indeterminate equations in least number of 

steps using the concept of least absolute 

remainder. 

4 Ᾱryabhaṭa Algorithm for System of 

Linear Congruences 

The text Ᾱryabhaṭῑya also contains problems 

that relate to more than two congruence 

relations. This involves the Ᾱryabhaṭa 

algorithm previously discussed and explained 

in Section 2.2 [Datta and Singh (2004); Mishra 

(2015)]. The problem mentioned by Ᾱryabhaṭa 

can be explained as follows in modern terms 

and notations. 

Problem 4.1. Find a number N which being 

severally divided by 1 2 3( , , , , )na a a a  leaves 

remainder 
1 2 3( , , , , )nr r r r . 

1 1 1 2 2 2 3 3 3 ... n n nN a x r a x r a x r a x r= + = + = + = = +

. 

another form 

(mod )i iX m x  for 1 i n  . 

where ( , ) 1i jgcd m m i j=    and 

1i jx x i j  = − . 

The purpose is to find integer solutions of the 

above equations. 

4.1 Algorithm 

1. The method will start from taking first 

two modular relations
1 1(mod )X m x  and 

2 2(mod ) .X m x  

2. As mentioned before the pair 

represents a linear Diophantine equation of the 

form .ax by c− =  This equation solved using 

the Ᾱryabhaṭa algorithm explained in section 

2. 

3. Let the minimum value of N is 

obtained at value 1 1x =  such that 

1 1 1N a r= +  so that the general solution 

is
1 2 1 1 1 2 1 1 1( )N a a t r a a t a r = + + = + + , 

where t is an integer. The equation obtained 

can be explained as, the number N is when 

divided by 
1 2a a  leaves remainder 1 1 1.a r +   

4. To solve further next modular relation 

with be taken with this new equation obtained.  

5. The process is continued with 

successive reductions of equations, final 

solution is obtained for value of N. 

Mahāvῑra (c. 850), Ᾱryabhaṭa II (c. 950), 

Śripati (c. 1039) and Bhāskara II (b. 1114) 

described similar methods for solving 

simultaneous linear Diophantine equations-

samslista Kuṭṭaka (conjecture pulverizer) 

[Datta and Singh (2004)]. The following 

problem is present in the text of Bhāskara I on 

Ᾱryabhaṭῑya of Ᾱryabhaṭa. 

Example 4.1. Find a number which is divided 

by 8 leaves (5 as remainder), divided by 9 

leaves (4 as remainder), and divided by 9 

leaves (1 as remainder) [Datta and Singh 

(2004)]. 

Solution. The problem can be written in 

modern notation as 

8 5 9 4 7 1N x y z= + = + = +  

Taking first two conditions, this forms a linear 

Diophantine equation. The minimum value 

found by using Ᾱryabhaṭa algorithm is 

13.N =  

The new equation formed according to method 

explained above, 

72 13 7 1N t z= + = +  

The process is repeated in similar way to 

obtained least value of N  satisfying all the 

given conditions, which is found to be 85. 
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Conjecture 4.1. The Ᾱryabhaṭa algorithm 

solves the system of n linear indeterminate 

equations in n-1 steps. 

 

 

 

Results and Discussion  

5 Application to Cryptography 

An equation of the form (mod )ax b m  is 

called a linear congruence of modulo m, and 

by a solution of such an equation we mean an 

integer x0 for which 
0 (mod )ax b m , by the 

definition of the linear congruence the 

equation converts into 
0 0ax by c− =  which is 

a linear Diophantine equation. Thus, finding 

all integer that will satisfy the linear 

congruence (mod )ax b m  is identical with 

that of obtaining all solution of linear 

Diophantine equation 
0 0ax by c− =  [Rao 

(2006)]. Kak (1986) shows that the Ᾱryabhaṭa 

problem represent a pair of linear congruence. 

The solutions obtained in this problem has 

various application in context of modular 

relation. Some of them are discussed in this 

section. 

5.1 Multiplicative Inverse 

The multiplicative inverse of an integer 

number a under modulo m is calculated by 

using the modular relation; 1(mod )ax m , 

where a and m are coprime integers. For 

instance, if 3 5 1(mod7)  , then 

13 (mod 7) 5.−    

Consider the special case when 1c =  of linear 

indeterminate equation ax by c− = , we have 

1ax by− = , 

this implies that  

( )1 modx a b−=  and ( )1 mody b a−= − . 

Example 5.1. Find 
163 (mod23)−

 and 

123 (mod63).−
 

Solution. Let 
163 (mod23)x − , then we 

convert this relation into the linear 

indeterminate equation. The Ᾱryabhaṭa 

algorithm gives the solution of corresponding 

linear indeterminate equation 

23 11 63 4 1 −  =  (see example 3.2). The 

relevance of the solution is that 
163 (mod23) 4(mod23) 19− = − =  and 

123 (mod63) 11− = . Thus, we obtained 

1(mod )a b−
 and 

1(mod )b a−
 both by this 

method. 

Example 5.2. Find 
1137 (mod60)−

 and 

160 (mod137).−
 

Solution. Let 
1137 (mod60)x −  then we 

convert this relation into the linear 

indeterminate equation. The Ᾱryabhaṭa 

algorithm gives the solution of corresponding 

linear indeterminate equation 

60 16 137 7 1 −  = . The relevance of the 

solution is that 
1137 (mod60) 7(mod60) 53−  − =  and 

160 (mod137) 16−  . Thus, we obtained 

1(mod )a b−
 and 

1(mod )b a−
 both by this 

method. 

5.2 Linear Diophantine Equation 

In RSA encryption, the equation 

( )( )1 moded n  involves a linear 

Diophantine equation, where ( )n  is Euler’s 

totient function. This equation 

( )( )1 moded n  can be expressed as 

( ) 1ed k n− = , where k is an integer. The 

private key d can be found by using Ᾱryabhaṭa 

algorithm which is useful in decryption of 

message in cryptography. This can be 

expressed as 

( )( )1 modd e n−= . 

6 Concluding Remarks 
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Ᾱryabhaṭa was a great ancient Indian 

mathematician and Astronomer, whose 

contribution in solving indeterminate 

equations have extensive influence around the 

world. The Ᾱryabhaṭa algorithm is considered 

to be one of the most significant topical 

contributions of Indians. The simplicity of 

algorithm lies in the fact that it lessens large 

time taking computing operations into several 

modular arithmetic with less iterations. The 

linear Diophantine equation ( ) 1ed k n− =  is 

crucial in RSA for determining the private key 

exponent d. The Ᾱryabhaṭa algorithm can be 

employed to find solution to this equation 

providing a method to compute the private key 

from the public key component. This may be 

utilized by the computer scientists in 

developing crypto algorithms. Although the 

algorithm basically provides solutions to the 

linear indeterminate equations, it also plays an 

important role in the solution of the much 

more difficult second-order indeterminate 

equations. 
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