

An Efficient Ratio Estimator of Population Mean for Simple Random Sampling

Richa Sharma¹ • Lakhan Singh1* • Subhash Kumar Yadav² • Manish Kumar³ • Aadarsh Kumar¹

¹Department of Statistics, Hemvati Nandan Bahuguna Garhwal Central University, Srinagar-246174, U.K., India ²Department of Statistics, Babasaheb Bhimrao Ambedkar University, Lucknow-226025, U.P., India 3 Indian Council of Forestry Research and Education, Dehradun-24006, U.K., India

*Corresponding Author: drsinghlakhan@gmail.com

Received: 10.11.2024 Revised:15.12.2024 Accepted: 19.12.2024

©Society for Himalayan Action Research and Development

Abstract: In this paper, a modified exponential type of ratio estimator has been propounded for estimating population mean of a main variable, using Kappa technique under Simple random Sampling (SRS) Scheme to enhance the efficiency of ratio estimator. The expressions of Bias and Mean Square Error (MSE) for the introduced estimator have been derived for approximation up to the order one. The minimum MSE value for the suggested estimator is also attained for the optimum value of the two kappa constants. In addition, both theoretically and empirically, the proposed estimator has been studied and a comparison with the competing estimators. The empirical study has been carried out with both real and simulated datasets to validate the efficiency conditions. The numerical study is performed using R programming and has been found that the introduced estimator is stronger than all other existing estimators of population mean.

Keywords: Ratio Estimator • Auxiliary Variable • Percent Relative Efficient • Mean Square Error • Simple Random Sampling.

Introduction

In the study of samples, the aim of supplementary information supplied by auxiliary variable X is to enhance the estimation of unknown population parameters. The most appropriate estimator for estimating any parameter is the coinciding statistic. Generally, for population mean Y of main variable *Y*, sample mean \overline{y} is the most appropriate unbiased estimator, but has considerably large sampling variance. Our target is to produce an estimator which can be biased but having small variance using auxiliary information as compared to sample mean. As a conclusion of literature review, the information on *X* benefits the estimators by improving its efficiencies for estimating any parameter as it has a high correlation with Y . When a high positive correlation between *X* and *Y* is observed, then ratio estimator is preferred while product estimator is suggested in case of highly negatively correlated *X* and *Y* . Otherwise, regression estimators are used for efficiently estimating *Y* .

[©SHARAD](http://jmr.sharadpauri.org/) 443 [WoS Indexing](https://mjl.clarivate.com/search-results?issn=0974-3030) Ratio technique for estimating the parameters is one of the most common and simplest methods of estimation. Cochran (1940) made use of positive correlated X to devise the typical ratio estimator. After Cochran(1940), many researchers for example, Sisodia and Dwivedi (1981), Upadhyaya and Singh

(1999), Singh *et al.* (2004), Al-Omari (2009), Yan and Tian (2010), Subramani and Kumarpandiyan (2012), Jeelani *et al.* (2013), Yadav *et al.* (2019) have revised the usual ratio estimator using information on X such as Coefficient of Variation C_x , Coefficient of Skewness β_1 and Kurtosis β_2 , Median M_x , Quartile Deviation etc. to likely obtain the minimal MSE. Bahl and Tuteja (1991) recommended exponential type ratio and product estimators.To escalate the precision of the usual ratio estimator, Jerajuddin and Kishun (2016) used sample size *n* instead of *X* .To enhance estimation, Singh and Tailor (2003) employed information that was already known about the correlation coefficient ρ_{yx} between

Y and *X* while Upadhyaya and Singh (1999) used a transformed *X* . Under SRS and stratified random sampling methods, Shabbir and Gupta (2011) and Singh and Solanki (2012) suggested better ratio type estimators of *Y* using information on *X* in quantitative and qualitative formats. Yadav and Kadilar (2013a, 2013b), Sharma and Singh (2013) introduced improved ratio and product type estimators of *Y* using known information on the parameters of X , whereas Yadav and Mishra (2015) and Abid *et al.* (2016) suggested elevated ratio type estimators of *Y* using known information on median

information on parameters of *X* .

size n is

sample

regression and ratio exponential estimators. Yadav *et al.* (2022) suggested an elevated estimator for estimating average peppermint production with known X as area of the field. Ali *et al.* (2023) worked on efficient estimation of *Y* utilizing known

In this study, the objective and the rationale is to search for more efficient estimator of population mean, which closely estimate the population mean of the investigating variable and enhance the efficiency of an exponential type of ratio estimator compared to other existing estimators under consideration of study. Let the population under study of size *N*. Using SRS scheme, the observations on the required

taken from (x, y) .

of *Y* and some traditional and non-traditional auxiliary parameters. Yadav and Pandey (2017) and Yadav *et al.* (2017) proposed various auxiliary information-based enhanced estimators. Ijaz and Ali (2018), Yadav *et al.* (2018), and Zatezalo *et al.* (2018) introduced elevated ratio and regression type estimators of *Y* using known usual and non-usual location parameters. For improved estimation of *Y* , Yadav *et al.* (2019) and Zaman (2019) utilised available information on usual and non-usual properties of *X* .

Baghel and Yadav (2020) suggested a naive estimator for enhanced estimation of *Y* using known auxiliary parameters while Yadav *et al.* (2021) worked on a new class of estimators for *Y* using

Notations used in the manuscript are as follows:

N: Population size,

n: Sample size,

 ${}^{\text{N}}\mathcal{C}_n$: Number of possible cases of n from N,

y: Study Variable,

x: Auxiliary Variable,

 M_{y} , M_{x} : Medians of populations of y and x respectively

 $\overline{X}, \overline{Y}$: Population means of auxiliary and study variables,

 \bar{x} , \bar{y} : Sample means of auxiliary and study variables,

 ρ_{yx} : Correlation Coefficient between *y* and *x*,

β: Regression Coefficient of *y* on *x*,

 S_y^2 , S_x^2 : Population Mean Square, S_{yx} : Covariance between *y* and *x*,

 C_y , C_x : Coefficients of Variation for *y* and *x*,

 $B(\cdot)$: Bias of the estimator; $V(\cdot)$: Variance of the estimator,

 Q_1 : First Quartile; Q_3 : Third Quartile,

 Q_r : Quartile Range; Q_a : Quartile Average,

QD: Quartile Deviation; *TM*: Tri-Mean,

 β_1 : Coefficient of Skewness; β_2 : Coefficient of Kurtosis,

MSE(\cdot): Mean Squared Error of the Estimator,

PRE(\cdot): Percentage Relative Efficiency of the estimator to SRS mean

Review of Existing Estimators

In this section, various estimators of *Y* along with their variances or MSEs and constants are presented. The sample mean \overline{y} and various modified ratio estimators of *Y* using known information on *X* by different authors are given in Table 1. The

Variance/MSE of *y* and considered existing estimators as well as their constants are also given in Table 1.

Table 1: Literature review of various existing estimators of *Y* **and their MSE along with constants.**

Suggested Estimator

Searls (1964) has shown that a constant multiple of \bar{y} is more efficient than \bar{y} while estimating Y. Motivated by Searls (1964), we devise an improved exponential-type ratio estimator for the estimation of *Y* , motivated by Baghel and Yadav (2020), as,

$$
t_p = \kappa_1 \bar{y} + \kappa_2 \bar{y} \exp\left[\frac{(a b \bar{x} + c d) - (a b \bar{x} + c d)}{(a b \bar{x} + c d) + (a b \bar{x} + c d)}\right]
$$
(1)

Where *a*, *b*, *c*, and *d* are the auxiliary parameters and κ_1 and κ_2 are the constants which minimizes the MSE of suggested estimator.

To acquire the Bias and MSE of the introduced estimator, we have the following approximations:

[©SHARAD](http://jmr.sharadpauri.org/) 446 [WoS Indexing](https://mjl.clarivate.com/search-results?issn=0974-3030)

 $\overline{v} = \overline{Y}(1 + e_0) \& \overline{x} = \overline{X}(1 + e_1)$ such that $E(e_0) = E(e_1) = 0$ and $E(e_0^2) = \lambda C_y^2$, $E(e_1^2) = \lambda C_x^2$, $E(e_0, e_1) = \lambda C_{yx}$ where, $\lambda = \frac{1}{n} - \frac{1}{N}$ & $C_{yx} = \rho_{yx} C_y C_x$

Now we put the proposed estimator in terms of e_i 's as,

$$
t_{P} = \kappa_{1}\overline{Y}(1+e_{0}) + \kappa_{2}\overline{Y}(1+e_{0}) \exp\left[\frac{(ab\overline{X} + cd) - (ab\overline{X}(1+e_{1}) + cd)}{(ab\overline{X} + cd) + (ab\overline{X}(1+e_{1}) + cd)}\right]
$$

= $\kappa_{1}\overline{Y}(1+e_{0}) + \kappa_{2}\overline{Y}(1+e_{0}) \exp\left[\frac{-\theta e_{1}}{1+\theta e_{1/2}}\right]_{\text{where,}} \theta = \frac{ab\overline{X}}{ab\overline{X} + cd}$
= $\kappa_{1}\overline{Y}(1+e_{0}) + \kappa_{2}\overline{Y}(1+e_{0}) \exp\left[\frac{-\theta e_{1}}{2}(1+\frac{\theta e_{1}}{2})^{-1}\right]$

Elaborating the expression $(1+\frac{1}{2})^{-1}$, simplifying and confining terms up to the first order of approximation, we get

$$
t_p = \kappa_1 \bar{Y}(1 + e_0) + \kappa_2 \bar{Y}(1 + e_0) \left(1 - \frac{\theta e_1}{2} + \frac{3\theta^2 e_1^2}{8}\right)
$$
\n⁽²⁾

Now subtracting \overline{Y}_{on} both sides of the above equation (2), we obtain

$$
t_p - \overline{Y} = \overline{Y} \left[\kappa_1 (1 + e_0) + \kappa_2 \left(1 + e_0 - \frac{\theta e_1}{2} + \frac{3\theta^2 e_1^2}{8} - \frac{\theta e_0 e_1}{2} \right) - 1 \right]
$$
\n(3)

On both sides, taking the expectation of (3), we possess the Bias of the suggested estimator of approximation up to order one after putting the different expectations values as,

$$
B(t_p) = \overline{Y}[\kappa_1 + \kappa_2 \left(1 + \frac{3\theta^2 \lambda C_x^2}{8} - \frac{\theta \lambda C_{yx}}{2}\right) - 1]
$$
\nEquating and taking expectations on both sides of (2), we obtain the MSE of the intraduced estimator for

Squaring and taking expectations on both sides of (3), we obtain the MSE of the introduced estimator for an approximation of first order after putting the different expectations values as,

$$
MSE(t_p) = \overline{Y^2} \left[\kappa_1^2 (1 + \lambda C_y^2) + \kappa_2^2 (1 + \lambda C_y^2 + \theta^2 \lambda C_x^2 - 2\theta \lambda C_{yx}) - 2\kappa_1 - 2\kappa_2 \left(1 + \frac{3\theta^2 \lambda C_x^2}{8} - \frac{\theta \lambda C_{yx}}{2} \right) \right]
$$

+ 2\kappa_1 \kappa_2 \left(1 + \lambda C_y^2 + \frac{3\theta^2 \lambda C_x^2}{8} - \theta \lambda C_{yx} \right) + 1 \right]
= \overline{Y^2} \left[A\kappa_1^2 + B\kappa_2^2 - 2\kappa_1 - 2C\kappa_2 + 2D\kappa_1 \kappa_2 + 1 \right] (5)
where, $A = (1 + \lambda C_y^2)$
 $B = (1 + \lambda C_y^2 + \theta^2 \lambda C_x^2 - 2\theta \lambda C_{yx})$
 $C = \left(1 + \frac{3\theta^2 \lambda C_x^2}{8} - \frac{\theta \lambda C_{yx}}{2} \right)$
 $D = \left(1 + \lambda C_y^2 + \frac{3\theta^2 \lambda C_x^2}{8} - \theta \lambda C_{yx} \right)$
The mean square error in equation (5) is minimum for,
 $\kappa_1 = \frac{B - CD}{(AB - D^2)} \mathcal{L} \kappa_2 = \frac{(AC - D)}{(AB - D^2)}$
and the minimum MSE is,

where,

$$
P = A(B - CD)^{2} + B(AC - D)^{2} - 2(B - CD)(AB - D^{2}) - 2C(AC - D)(AB - D^{2}) + 2D(B - CD)(AC - D)
$$

Q = (AB - D²)

(6)

Theoretical Efficiency Comparison

In this section, the efficiency comparison of the introduced estimator t_p has been carried out with the competing

estimators of Y and the efficiency conditions for introduced estimator to be better than the competing estimators have been obtained. The introduced estimator outperforms the mentioned estimators under the following conditions, resulting from the comparison of MSE with other existing estimators are given in the Table 2. **Table 2: Theoretical comparison & Efficiency Conditions**

Numerical Study

To verify the theoretical finding, we have taken into account, the two data sets from real life problems. For the data sets under consideration, the values of various parameters have been calculated and the MSEs of different competing estimators and the suggested estimators have been calculated. The percentages Relative Efficiency (PRE) of various estimators over the \bar{y} estimator have also been calculated. The PRE for different estimators over *y* estimator have been calculated by using the following formula:

$$
PRE = \frac{V(t_0)}{MSE(\cdot)} \times 100
$$

Details of Data set 1:

Source: Daroga Singh and F.S. Chaudhary (2020, Page-176)

Auxiliary Variable(*x***)**: Area under guava orchards (in acres) during 1971-72

Study Variable(*y***)**: Total of guava trees during 1971-72

Table 3: Population Parameters of Data 1

$N=13$	$n=3$	$\bar{Y} = 746.9231$	$\bar{X} = 5.661538$
$S_v = 450.2417$	$S_r = 3.679984$	$C_v = 0.6027953$	$C_r = 0.6499971$
$M_{\rm v} = 714$	$M_{\rm r} = 5.99$	$\rho_{vx} = 0.9005962$	$C_{vx} = 0.3528673$
$\beta_1 = 0.7045741$	$\beta_2 = 6.456733$	$f = 0.2307692$	$\lambda = 0.2564103$
$C_n = 286$	$Q_1 = 2.200$	$Q_3 = 6.580$	$Q_r = 4.38$
$Q_a = 4.923333$	$OD = 2.19$	$TM = 5.19$	

Details of Data set 2:

Source: Daroga Singh and F.S. Chaudhary (2020, Page-177)

Auxiliary Variable (x) **: Cultivated Area under wheat in a region during 1973**

Study Variable(*y***)**: Area under wheat in a region during year 1974

Table 5: Population Parameters of Data 2

Table 6: MSE & PRE of various existing estimators & suggested estimators for Data 2

Simulation Study

Additionally, a simulated population was created using the R program to analyse the results of competing estimators and the proposed estimator for the unreal population and see the differences between the two. To generate or simulate this population, the parameters (mean vectors and variance-covariance matrix) from the same real populations represented in the numerical study are used to create a realistic data representation. Here, the mean vector represents expected variable values, allowing the simulation to be based on typical observations for effective estimation. The variance-covariance matrix captures data variability and inter-variable relationships, simulating complex interactions common in real data sets. Using a bivariate normal distribution with mean vectors and a variance-covariance matrix, the population for both datasets is created to enhance the simulation's realism as follows:

For Dataset 1:

- Means of [Y, X] as $\mu = [746.9231, 5.661538]$
- Variances and covariance of [Y, X] as $\sigma^2 = \begin{bmatrix} 202717.588 & 1492.182 \\ 1492.182 & 13.54228 \end{bmatrix}$
-
- Correlation $\rho_{yx} = 0.9032775$

For Dataset 2:

- Means of [Y, X] as $\mu =$ [199.4412, 208.8824]
- Variances and covariance of [Y, X] as $\sigma^2 = \begin{bmatrix} 22564.55 & 22158.05 \\ 22158.05 & 22652.06 \end{bmatrix}$
	-
- Correlation $\rho_{yx} = 0.9793408$

Procedure for simulating the population as follows:

(a) With the help of R program, simulated populations for a bivariate normal distribution of Y and X of size N as 5000 have been generated from above parameters.

- (b) For this simulated population, parameters have been determined.
- (c) Then a sample of size n has been selected from this population using SRSWOR.
- (d) Sample statistics and the proposed and existing estimator *ti* values are estimated for this sample.
- (e) Repeating the steps c) and d) for b=50000 times.
- (f) The MSE of every estimator t_i is computed by:

$$
MSE(t_i) = \frac{1}{b} \sum_{j=1}^{b} (t_{ij} - \overline{Y})^2
$$

(g) The PRE of each of the estimator t_i has been calculated using the formula:

$$
PRE(t_i) = \frac{MSE(t_c)}{MSE(t_i)} \times 100
$$

Table 7: MSE & PRE of mentioned estimators & suggested estimators for simulated population of Data 1 (for sample sizes of n as 40, 50 and 60 respectively)

Table 8: MSE & PRE of mentioned estimators & suggested estimators for simulated population of Data 2 (for sample sizes of n as 40,50 and 60 respectively)

Results and Discussion

- (I) Review of literature of existing estimators are shown in Table 1. Table 2 consists of the comparison of various competing estimators with the proposed estimator t_p providing the conditions under which t_p is better than other ones. Table 3 and Table 4 consists of data of population parameters of data sets 1 and 2 respectively, with which we have proved the results empirically. Table 5 and Table 6 display the values of MSE and the PRE of several considered estimators as well as proposed class of estimators according to data set 1 and 2 respectively. Table 7 and Table 8 shows the values of MSE and the PRE of introduced and competing estimators for simulated populations for sample of size 40, 50 and 60 according to data set 1 and 2 respectively. From the above tables, it may be observed the suggested estimator outperform the competing estimators.
- (II) For real population:
- [©SHARAD](http://jmr.sharadpauri.org/) 452 [WoS Indexing](https://mjl.clarivate.com/search-results?issn=0974-3030) (a) For data set 1, the variance is 51978.87 of sample mean whereas the MSE of all other competing estimators are varying between 23293.99 to

9820.181. In the proposed class of estimators, their MSE lies between 9766.057 to 9815.086. Here the minimal value of MSE of the introduced class is 9767.706, which is smallest among the class of all mentioned existing estimators while the PRE value of suggested class is 532.1502, which is the greatest out of all the mentioned existing estimators of *Y* under SRS procedure.

- (b) For data set 2, the variances 3849.248 of sample mean whereas the MSE of all other existing estimators are lying between 1117.772 to 151.7764. In the introduced class of estimators, their MSE lies between 132.4726 to 133.1. Here the MSE value of the proposed class is 133.1, which is minimum among the discussed existing estimators while the PRE value of suggested class is 2891.996, which is the largest out of all the mentioned estimators of population mean under SRS scheme.
- (III) For simulated population:
- (a) From Table 7 for data set 1, it is evident that the MSE of introduced estimator is less than the other competing estimators for different sample sizes of simulated population. Here, the MSE values of

p t are 944.5796, 754.2204, 627.2918 for the

sample of size 40, 50 and 60. Also, the PRE values of introduced class are greatest among the mentioned competing estimators, i.e., 539.2397, 539.1823, 539.1440 for the sample of size 40, 50 and 60 respectively, showing improvement over competing estimators.

(b) From Table 8 for data set 2, it is evident that the MSE of introduced estimator is less than the other competing estimators for different sample sizes of simulated population. Here, the MSE values of *p t* are 22.06287, 17.66953, 14.72518 for the sample of size 40, 50 and 60 respectively. Also, the PRE values of introduced class are greatest among the mentioned competing estimators, i.e., 2483.02172, 2475.31923, 2470.22143 for the sample of size 40, 50 and 60 respectively, which shows better efficiency of the proposed estimator.

Conclusion

In this paper, we have been able to devise an exponential- type ratio estimator that is more efficient than other competing estimators of *Y* under SRS scheme. The Bias and Mean MSE of t_p for an approximation up to order one have been studied. For t_p , the MSE is minimum for the optimum values

of κ_1 & κ_2 . Both theoretically as well as numerically, it has been concluded that the propounded estimator has outperformed than other existing competing estimators. Through both real and simulated populations, t_p has the least MSE and largest PRE

out of all the mentioned competing estimators of *Y* , thereby attaining the goal of the study. Hence, the proposed class of estimators t_p can strongly be advised for empirical use in various applied fields such as commerce, medical sciences, engineering, agriculture, economics etc.

References

Abid M, Abbas N, Sherwani R A K and Nazir H Z (2016). Improved ratio estimators for the population mean using non-conventional measures of dispersion. *Pakistan Journal of Statistics and Operations Research*, 12 (2), 353-367.

- Ali M, Yadav S K, Gupta R K, Kumar S and Singh L (2023). Enhancement of Class of Estimators for Estimating Population Mean using Known Auxiliary Parameters. *International Journal of Agricultural and Statistical Sciences*, 19(2), 527-534.
- Al-Omari A I, Jemain A A and Ibrahim K (2009): New Ratio Estimators of the Mean using Simple Random Sampling and Ranked set Sampling Methods. *Revista Investigación Operacional*, 30(2), 97- 108.
- Baghel S and Yadav S K (2020). Restructured class of estimators for population mean using auxiliary variable under simple random sampling scheme. *JAMSI*, 16(1), 61-75.
- Bahl S and Tuteja R K (1991). Ratio and Product Type Exponential Estimators. *Journal of Information and Optimization Sciences*, 12(1), 159-164.
- Cochran W G (1940). The Estimation of the Yields of the Cereal Experiments by Sampling for the Ratio of Grain to Total Produce. *The Journal of Agriculture Science*, 30, 262-275.
- Ijaz M and Ali H (2018). Some improved ratio estimators for estimating mean of finite population. *Research & Reviews: Journal of Statistics and Mathematical Sciences*, 4(2), 53-58.
- Jeelani M I, Maqbool S and Mir S A (2013). Modified Ratio Estimators of Population Mean using Linear Combination of Coefficient of Skewness and Quartile Deviation. *International Journal of Model Mathematical Sciences*, 6(3), 174-183.
- Jerajuddin M and Kishun J (2016). Modified Ratio Estimators for Population Mean Using Size of the Sample selected from the Population. *International Journal of Scientific Research in Science, Engineering and Technology, 2*(2), 10-16.
- Searls D T (1964). The Utilization of a Known Coefficient of Variation in the Estimation Procedure. *Journal of the American Statistical Association*, 59, 1225-1226. Shabbir J and Gupta S (2011). On estimating finite population mean in simple and stratified sampling. *Communications in Statistics-Theory and Methods*, 40(2), 199- 212.
- Sharma P and Singh R (2013). Improved estimators for simple random sampling and stratified random sampling under second order of approximation. *Statistics in Transition-New Series*, 14(3), 379-390.

- Singh D and Chaudhary F S (2020). *Theory and analysis of Sample Survey Designs*, Second Edition, New Age Int. (P) Ltd.
- Singh H P and Solanki R S (2012). Improved estimation of population mean in simple random sampling using information on auxiliary attribute. *Applied Mathematics and Computation*, 218(15), 7798-7812.
- Singh H P and Tailor R (2003). Use of known Correlation Coefficient in Estimating the Finite Population Mean. *Statistics in Transition*, 6(4), 553-560.
- Singh H P, Tailor R and Kakran M S (2004). An improved Estimator of population mean using power transformation. *Journal of Indian Society of Agricultural Statistics*, 58(2), 223-230.
- Sisodia B V S and Dwivedi V K (1981). Modified ratio estimator using coefficient of variation of auxiliary variable. *Journal-Indian Society of Agricultural Statistics,* 33, 13-18.
- Subramani J and Kumarapandiyan G (2012a). Modified Ratio Estimators for Population Mean using Function of Quartiles of Auxiliary Variable. *Bonfring International Journal of Industrial Engineering and Management Science,* 2(2), 19-23.
- Subramani J and Kumarapandiyan G (2012b). Estimation of Population Mean using known Median and Coefficient of Skewness. *American Journal of Mathematics and Statistics*, 2(5), 101-107.
- Upadhyaya L N and Singh H P (1999). Use of Transformed Auxiliary Variable in Estimating the Finite Population Mean, *Biometrical Journal,* 41, 627-636.
- Yadav S K and Kadilar C (2013a). Improved class of ratio and product estimators. *Applied Mathematics and Computation*, 219, 10726- 10731.
- Yadav S K and Kadilar C (2013b). Efficient family of exponential estimator for population mean. *Hacettepe Journal of Mathematics and Statistics*, 42(6), 671-677.
- Yadav S K and Mishra S S (2015). Developing improved predictive estimator for finite

population mean using auxiliary information. *Statistika*, 95(1), 76-85.

- Yadav S K and Pandey H (2017). A new difference type median based estimator of the finite population mean. *International journal of Agricultural and Statistical Sciences*, 13(1), 289-295.
- Yadav S K, Dixit M K, Dungana H N and Mishra S S (2019). Improved Estimators for Estimating Average Yield Using Auxiliary Variable. *International Journal of Mathematical Engineering and Management Sciences*, 4(5), 1228-1238
- Yadav S K, Sharma D K and Brown K (2022). Estimating peppermint oil yields with auxiliary variable information. *International Journal of Operational Research*, 44(1), 122- 139. Yadav S K, Sharma D K and Kadilar C (2021). New family of estimators for population mean using regression-cum-ratio exponential estimators. *International Journal of Mathematics in Operational Research*, 18(1), 85-114.
- Yadav S K, Sharma D K, Mishra S S and Shukla A K (2018). Use of auxiliary variables in searching efficient estimator of population mean. *International Journal of Multivariate Data Analysis*, 1(3), 230-244.
- Yadav S K, Singh L, Mishra S S, Mishra P P and Kumar S (2017). A median based regression type estimator of the finite population mean. *International Journal of Agricultural and Statistical Sciences*, 13(1), 265-271.
- Yan Z and Tian B (2010). Ratio Method to the Mean Estimation using Coefficient of Skewness of Auxiliary Variable. *ICICA 2010, Part II, CCIS*,106,103-110.
- Zaman T (2019). Improvement in estimating the population mean in simple random sampling using coefficient of skewness of auxiliary attribute. *Journal of Natural and Applied Sciences*, 23(1), 98-102.
- Zatezalo T, Gupta S, Yadav S K and Shabbir J (2018). Assessing the Adequacy of First Order Approximations in Ratio Type Estimators. *Journal of Interdisciplinary Mathematics*, 21, 6, 1395-1411.