

Floristic Diversity of Pteridophytes in High-Altitude Zones of the Namik Region and Surrounding Areas, Pithoragarh, Uttarakhand (Western Himalayas)

Sachin Pandey¹ • Jyoti Niwas Pant¹ • Sanjay Kumar² • Vineeta Bhatt³

¹Department of Botany, Government Postgraduate College, Berinag, 262531 ²Department of Botany, M.B. Government Postgraduate College, Haldwani, 263139 ³Department of Biotechnology, Kumaun University, Sir JC Bose Technical Campus Bhimtal, 263136

*Corresponding Author: pantjn@gmail.com

Received: 10.05.2024 Revised: 10.10.2024 Accepted: 11.10.2024

©Society for Himalayan Action Research and Development

Abstract: Exploratory surveys in 2021 and 2022 around the Namik Glacier, at altitudes over 7000 feet, uncovered significant pteridophytic biodiversity during the monsoon season. Extensive fieldwork from Rhugair to Thala and Namik Village to Chafu Top identified fifty-five species of pteridophytes across twenty-eight genera and fourteen families, primarily terrestrial. This region was chosen for its rich floral diversity and lack of thorough species inventories. The surveys revealed a high concentration of ferns and lycophytes between 7000 and 9500 feet, with species richness declining at higher altitudes. Lower zones, transitioning from tropical to temperate forests, were abundant in epiphytic species, which became scarce at higher elevations. Soil analyses from two sites showed alkaline pH, high organic carbon, and good levels of phosphorus and potassium, favorable for pteridophyte growth. A gradient in soil alkalinity was observed, decreasing with elevation.

Keywords: Pteridophyte Diversity • Namik Glacier • Uttarakhand • Western Himalayas

Introduction

The Western Himalayan region, celebrated for its breathtaking landscapes and rich biodiversity, serves as a nurturing ground for the proliferation of ferns and their allies. This area's dense forests and diverse ecosystems create a canopy that maintains a moist and shaded environment conducive to the growth and development of these species.

Globally, approximately 1,2000 species of ferns and their associates are known, with India, encompassing both the Eastern and Western Himalayas, being home to nearly 1,000–1,200 of these species. In the Western Himalayas, Khuller (1994, 2000) documented over 361 species, while Fraser-Jenkins (2013) cataloged 184 species of ferns and lycophytes in Jammu & Kashmir. The Namik Glacier region is distinguished by its abundant floral diversity.

Vegetation of Namik glacier regions: The vegetation diversity in the Namik Glacier region

can be attributed to human activities, regional conditions, and microclimates. Despite these influences, the area boasts a rich array of flora. Notable higher plant species in the Namik region include *Rhododendron arboreum*, *Neolitsea pallens*, *Ficus auriculata*, *Quercus semicarpifolia*, *Taxus baccata*, *Quercus leucotrichophora*, *Celtis eriocarpa*, *Betula utilis*, and *Aesculus indica*, among others.

Climatic conditions: The altitude significantly impacts the local climatic conditions, leading to a wide range of weather patterns from tropical to extremely frigid temperatures. The lower elevations experience severe cold during winter, while the higher altitudes, including the glacier range, are perpetually snow-covered.

Soil Composition: The soil in the Namik Glacier Region is alkaline, enriched with substantial amounts of organic carbon, available phosphorus, and potassium, creating an optimal

environment for the growth and development of pteridophytes. (Table 2)

Materials and Methods

Field Survey and data collections: Field surveys were conducted in September 2021 and October 2022, with comprehensive data collection from various locations within the study area. Essential data were meticulously recorded, and photographic documentation was carried out using a Nikon D 3100 camera. Species identification was facilitated bv taxonomic experts, herbarium references, and related floras. The identified species were authenticated by Dr. Kamlesh Kumar Bhakuni from the Department of Botany at L.S.M. Campus, Pithoragarh. Specimens were collected personally, and a detailed list was compiled, including habitat descriptions and elevation ranges.

Plant specimens were collected, pressed, and preserved following the method described by Jain and Rao (1977). The resulting herbarium was housed at the Government Post Graduate College, Berinag, Pithoragarh. Soil samples were also obtained from two distinct sites: Thala Bugyal and Nanda Temple, and subsequently analyzed at a soil testing laboratory in Bhowali, Nainital.

Observations and Discussion

The taxonomic nomenclature and family delimitation proposed by Fraser-Jenkins et al. (2020) have been extensively adopted. Fifty-five species were collected from altitudes exceeding 7,000 feet in the Namik Glacier Region. The genera within each family and the species within each genus are systematically presented in alphabetical order, with all families, genera, and species duly cited.

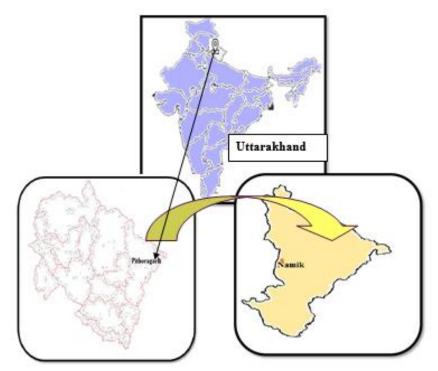
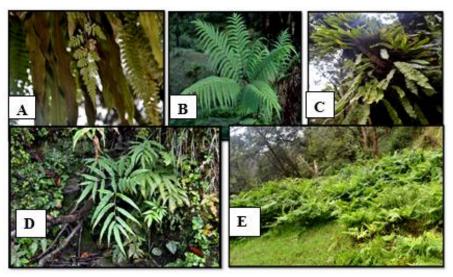


Fig 1 Map Showing location of study area (souse: Google earth and field map.)



Family	Genus	Species	Elevation (In feet)	Habitat
Aspleniaceae	Asplenium	Asplenium capillipes	8700	Lithophyte
Blechnaceae	Woodwardia	Woodwardia unigemmata	7500	Terrestrial
Davalliaceae	Katoella	Katoella beddomei	8858	Epiphyte/Lithophyte
Davalliaceae	Katoella	Katoella pulchra	9049	Epiphyte
Davalliaceae	Leucostegis	Leucostegia truncata	7200	Epiphyte
Dennstaedtiaceae	Dennstaedtia	Dennstaedtia appendiculata	9437	Terrestrial
Dennstaedtiaceae	Pteridium	Pteridium revolutum	9825	Terrestrial
Dryopteridaceae	Dryopteris	Dryopteris caroli-hopei	9890	Terrestrial
Dryopteridaceae	Dryopteris	Dryopteris cochleata	9714	Terrestrial
Dryopteridaceae	Dryopteris	Dryopteris panda	9870	Terrestrial
Dryopteridaceae	Dryopteris	Dryopteris redactopinnata	9663	Terrestrial
Dryopteridaceae	Dryopteris	Dryopteris sparsa	8590	Terrestrial
Dryopteridaceae	Dryopteris	Dryopteris wallichiana	9590	Terrestrial
Dryopteridaceae	Polystichum	Polystichum discretum	10005	Terrestrial
Dryopteridaceae	Polystichum	Polystichum nepalense	9586	Terrestrial and Lithophyte
Dryopteridaceae	Polystichum	Polystichum mehrae	10081	Terrestrial and Lithophyte
Equisetaceaceae	Equisetum	Equisetum arvense ssp arvense	8950	Terrestrial
Equisetaceaceae	Equisetum	Equisetum diffusum	7210	Terrestrial
Lindsaeaceae	Odontosoria	Odontosoria chinensis	7600	Terrestrial
Lycopodiaceae	Lycopodium	Lycopodium japonicum	9000	Terrestrial
Oleandraceae	Oleandra	Oleandra wallichii	8612	Epiphyte, Lithophyte and Terrestrial
Ophioglossaceae	Botrychium	Botrychium lanuginosum	8200	Terrestrial
Polypodiaceae	Arthromeris	Arthromeris lehmannii	8600	Lithophyte
Polypodiaceae	Arthromeris	Arthromeris wallichiana.	7896	Lithophyte
Polypodiaceae	Drynaria	Drynaria mollis	9372	Epiphyte
Polypodiaceae	Goniophlebium	Goniophlebium argutum	9800	Terrestrial
Polypodiaceae	Lepisorus	Lepisorus loriformis	9611	Lithophyte
Polypodiaceae	Lepisorus	Lepisorus mehrae	10011	Epiphyte/Lithophyte
Polypodiaceae	Lepisorus	Lepisorus morrisonensis	7500	Epiphyte
Polypodiaceae	Lepisorus	Lepisorus nudus	7900	Epiphyte/Lithophyte
Polypodiaceae	Lepisorus	Lepisorus scolopendrium	8590	Epiphyte/Lithophyte
Polypodiaceae	Loxogramme	Loxogramme involute	7896	Epiphyte/Lithophyte
Polypodiaceae	Loxogramme	Loxogramme porcata	7250	Epiphyte Epiphyte
Polypodiaceae	Microsorum	Microsorum membranaceum	7600	Epiphyte/Lithophyte
Polypodiaceae	Pichisermollodes	Pichisermollodes	8600	Epiphyte

Table 1: List of Family, Genera and Species along with altitude and Habitat of Ferns

Family	Genus	Species	Elevation (In feet)	Habitat
		ebenipes		
Polypodiaceae	Pichisermollodes	Pichisermollodes malacodon	8400	Lithophyte
Polypodiaceae	Pichisermollodes	Pichisermollodes stewartia	8600	Epiphyte
Polypodiaceae	Pichisermollodes	Pichisermollodes stracheyii	9202	Epiphyte/Lithophyte
Polypodiaceae	Polypodiodes	Polypodiodes lachnopus	9200	Epiphyte/Lithophyte
Polypodiaceae	Selliguea	Selliguea oxyloba	7874	Epiphyte/Lithophyte
Pteridaceae	Aleuritopteris	Aleuritopteris bicolor	9700	Terrestrial
Pteridaceae	Aleuritopteris	Aleuritopteris grisea	9800	Terrestrial
Pteridaceae	Coniogramme	Coniogramme intermedia	9437	Terrestrial
Pteridaceae	Pteris	Pteris cretica	9000	Terrestrial
Pteridaceae	Pteris	Pteris wallichiana	10078	Terrestrial
Selaginellaceae	Sellaginella	Sellaginella chrysocaulos	8530	Terrestrial
Selaginellaceae	Sellaginella	Sellaginella vaginata	8250	Terrestrial & Lithophytes
Woodsiaceae	Athyrium	Athyrium atkinsonii	10005	Terrestrial
Woodsiaceae	Athyrium	Athyrium attenuatm	9437	Terrestrial
Woodsiaceae	Athyrium	Athyrium fimbriatum	9663	Terrestrial
Woodsiaceae	Athyrium	Athyrium mackinnoniorum	8670	Terrestrial
Woodsiaceae	Athyrium	Athyrium rubricaule	9576	Terrestrial
Woodsiaceae	Athyrium	Athyrium schimperi	7860	Terrestrial
Woodsiaceae	Athyrium	Athyrium strigillosum	9581	Terrestrial
Woodsiaceae	Woodsia	Woodsia elongata	10091	Epiphyte/ Lithophyte and Terrestrial

Fig 2: A. *Katoella pulchra* **B.** *Pteris wallichiana* **C.** *Oleandra wallichii* **D.** *Coniogramme intermedia* **E.** Population of *Pteris wallichiana a*

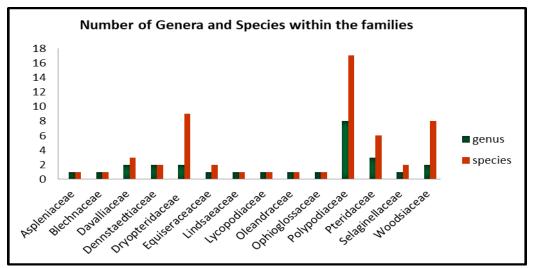


Fig 3: Number of Genera and Species within Families

During the field studies conducted in 2021 and 2022, a total of 55 species of ferns and their allies were recorded, spanning 28 genera and 14 families (**Table 1**) The Polypodiaceae family was the most represented with 16 species (accounting for 30% of the total species), followed by the Dryopteridaceae family with 9 species (17%), the Woodsiaceae family with 8 species (15%), and the Pteridaceae family with 6

species (11%). These four families collectively accounted for 74% of the total species observed, indicating their dominance in the upper elevation ranges and surrounding areas of the Namik Glacier. The habitat distribution of the species was primarily terrestrial with 29 species, while epiphytes and lithophytes were represented by 7 and 5 species, respectively.

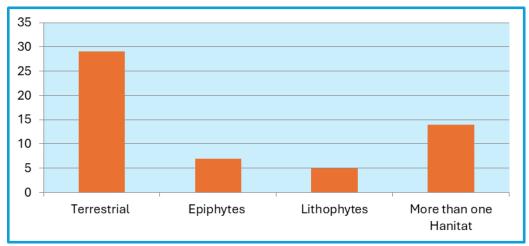


Fig 4: Diagram displaying the Number of species in different habitat types Table 2: Results of Soil sample analysis:

Sampling area (Namik)	рН	Organic C (%)	Available-P (Kg/ha)	Available -K (Kg/ha)
Nanda-temple 8000 ft	7.2	1.63	27.1	211

Thala	6.9	1.49	26.5	270
10000 ft	0.9	1.47	20.5	270

Acknowledgements

The authors would like to extend their heartfelt thanks to Dr. Kamlesh Kumar Bhakuni from the Department of Botany at L.S.M. Campus, Pithoragarh, for his expert identification of the fern species. Additionally, the authors are grateful to Mr. Pradeep, a local resident of the Namik region, for his invaluable support during the field research.

References

- Benniamin A et al (2023) A preliminary survey of pteridophytes from Bhadra Tiger Reserve, central western ghats of Karnataka. Indian.Fern. J 40(2): 2023.
- Bir SS (1964) Taxonomic notes on some Himalayan ferns. J. Indian Bot. Soc 43: 1964.
- Chandra H, Choudhary N and Sharma P (2017) Taxonomic and Ethnobotanical Notes on Some Ferns and Fern Allies of Hamirpur (H.P.), North-Western Himalaya. J.Biol.Chem. Chron 3(1) :2017.
- Fraser-Jenkins CR (2020) A modern taxonomic list of Indian Pteridophytes. Indian.Fern. J 37: 2020.
- Kharkwal K et al (2019) Pteridophytic Flora of Pati Block, Champawat District, Uttarakhand, Northern India. Indian Journal of Forestry 42(2):2019
- Kholia BS and Punetha N (1995) Notes on taxonomy and distribution of some pteridophytes in Kumaun (West Himalaya), J.Indian. Bot. Soc 74: 1995.
- Kholia BS and Punetha N (1995) Notes on taxonomy and distribution of some Pteridophytes in Kumaun (West Himalaya).J. Indian. Bot. Soc 74:1995.

- Khullar SP (1994) An Illustrated Fern Flora of West Himalaya Vol- I International Book Distributors Dehra Dun, India. 506 Pages.
- Khullar SP (2000) An Illustrated Fern Flora of West Himalaya Vol-II International Book Distributors Dehra Dun, India. 544 Pages.
- Khullar SP et al (2013) An illustrated pteridophytic flora of Jammu and Kashmir, Bishen Singh Mahendra Pal Singh Dehra Dun, India. 522 Pages.
- Kumar S and Raizada MB (1989) Survey and distribution of fern-allies and ferns of Chakrata Forest Division Uttar Pradesh. *Indian For*.115: .1989.
- Magesjh CR et al (2023) Pteridophytic flora of Dalma Wild Life Sanctuary Jharkhand, India. Indian.Fern. J 40(2): 2023.
- Pangtey YPS and Punetha N (1987) Pteridophytic Flora of Kumaun Himalaya: An updated List, in Pangtey YPS and Joshi SC et al (eds.) Western Himalaya- 1 Environment Gyanodaya Prakashan, Nainital.pp 389-412.
- Punetha N, Pant AK and Kholia BS (2004) Pteridophyte diversity of Kumaon (central himalaya) Bishan Singh Mahendra Pal Singh Dehra Dun, India. pp 267-280.
- Rani M et al (2009) Taxonomic studies on the family Pteridiaceae Ching and Pterdaceae Ching (Pteridophyta) in Uttarakhand. Researcher 1(4) :2009.