Review on Green Synthesized Nanocomposites and Their Biological Activities

Sumit Ringwal¹ • Ankit Singh Bartwal¹ • Aditya Ram Semwal² • Satish Chandra Sati¹*

¹Department of Chemistry, H.N.B. Garhwal University (A Central University) Srinagar Garhwal, Uttarakhand, India-246174
²Department of Chemistry, DAV PG College Dehradun, Uttarakhand, India-248001

*Corresponding Author Email id: sati_2009@rediffmail.com

Received: 02.04.2021; Revised: 02.05.2021; Accepted: 15.05.2021
©Society for Himalayan Action Research and Development

Abstract: In this paper, we reviewed the present status of synthesis of nano structured materials for technological development as bimetallic, trimetallic and various organic, inorganic polymers nanocomposites in the field of nanosciences. Nanocomposites play an important role in the field of sciences, engineering and industries due to their high catalytic power, high optical, electrical and mechanical properties, which can be very useful in the field of biosensors, nano medicines and many more as social welfare factor. There are many techniques used for the preparation of nanocomposites. Among them, green method is commonly used technique for the synthesis of nanomaterials which is cost-effective, eco-friendly and less hazardous materials for the environment. Here we attempt to present an elaborate work done in the field of nanocomposites dwelling upon their advantages, challenges and future prospects.

Keywords: Nanocomposites • Bimetallic • Trimetallic • Green Method • Bioactivities

Introduction

Nowadays, researchers are taking an enormous interest in the field of inorganic as well as organic polymer nanocomposites due to their unexpected hybrid characteristics, which are synthesized by heterogeneous combinations of various components as basic reactants and among the composites layered structured nano composites have been studied extensively for last decades (Sanchez et.al., 2001; Usuki et.al., 1993). Nanocomposites exhibit improved properties namely medicinal strength, moduli, thermal stability and other properties when compared with pure polymers or conventional micro and macro size composites. The enhanced properties have been achieved by synthesis of nanoscale materials via various approaches. Nanocomposites are utilized to produce optically efficient materials. Like if semiconductor nanoparticle is added with polymer, ceramic matrix materials or glass, there is enormous change in its optical property including absorption, fluorescence, and luminescence. In such kind of system, small size nanoparticles enhance optical properties while matrix material stabilized the particle size and growth (Burnside et.al., 2000; Choi et.al., 2000; Byun et.al., 2001; Krikorian et.al., 2002; Xie et.al., 2002; Bhardwaj et.al., 2002).

Other applications of nanocomposite structures have resulted in transparent materials with unusually high RI, magnetic properties, and excellent mechanical properties. Nanocomposite structures provide a new method to improve the process ability and stability of materials with interesting optical properties. The applications of

©SHARAD
such composites are extremely broad, ranging from solid-state amplifier films to transparent magnets. This review focuses on recent developments in the synthesis and applications in the field of nanocomposite and nanotechnology.

1. Green method
This is one of the most widely applied methods for the synthesis of nanocomposites because it is eco-friendly and it does not employ any toxic chemicals. Following steps are involved in green methods.

(a) Preparation of Extracts
Some amount of dried powdered plant material is added to solvent in 500 mL round bottom flask and mixed well. The preparation of extracts is done by using magnetic heating stirrer at 70°C for 30 min. The extracts obtained is centrifuged then filtered and filtrate is kept at refrigerator for further use further (Sati et.al., 2020a).

(b) Green synthesis of the Metal NPs by using plant extracts
In a typical synthesis of metal NPs, plant extracts is added to the metal salt or metal oxide solution (particular molarity) with desired ratio at 80°C with constant stirring. Reduction of metal ion take place around 3 min, as monitored by UV-Vis technique. The color of the reaction mixtures gradually changes in 3 min at 80°C which indicate the formation of metal nanoparticles. The colored solution of metal NPs is then centrifuged till color completely disappear (Bartwalet.al., 2020; Sati et.al., 2020b).

(c) Synthesis of the bimetallic or trimetallic nanocomposites
For green synthesis of bimetallic or trimetallic nanocomposites some amount of metal salt or metal oxide is dispersed with few mL of plant extracts under continuous stirring. After 15 min, few mL (in a fixed ratio with respect to plant extracts) of other metal oxide or metal salt is added to this mixture and stirred at 80°C for 4 h. Finally, the prepared bimetallic or trimetallic nanocomposites as separated by a magnetic separator, is washed with suitable solvent and then dried at 90°C (Ayinde et.al., 2018; Atarod et.al., 2016; Azizi et.al., 2016; Atarod et.al., 2016).

Table 1: Nanocomposites, Morphology and their activity

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Name of plant (Common name)</th>
<th>Part Used</th>
<th>Type of NCs/ morphology</th>
<th>λmax (in nm)</th>
<th>Characterization techniques</th>
<th>Activity [Ref.]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Citrus paradise (grape-fruit red)</td>
<td>P</td>
<td>Ag-MgO spherically dispersed</td>
<td>AgNPs at 440 Ncsat 380</td>
<td>UV , TEM, XRD, FTIR, SEM, EDX</td>
<td>Antibacterial (Ayinde et.al., 2018)</td>
</tr>
<tr>
<td>2</td>
<td>Withania coagulans (Paneerphool) wild ginger</td>
<td>L</td>
<td>Pd/RGO/Fe3O4</td>
<td>PdNPsat 263 Ncsat 270</td>
<td>XRD, FE-SEM, EDS, UV, VSM, TEM, FTIR, UV, TEM, EDX, XRD, FTIR.</td>
<td>Catalytic activity (Atarod et.al., 2016)</td>
</tr>
<tr>
<td>3</td>
<td>wild ginger EO</td>
<td>ZnO-Ag hexagonal ZnO NPs</td>
<td>AgNPs at 430 Ncs at 352</td>
<td>UV, XRD, EDS, FESEM, FT-IR</td>
<td>Antibacterial, antimicrobial (Azizi et.al., 2016) Catalytic activity (Atarod et.al., 2016)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Euphorbia heterophylla (Mexican) fireplant</td>
<td>L</td>
<td>Ag/TiO2</td>
<td>AgNPs at 250–350</td>
<td>FESEM, EDS, TEM, BET, XRD, FT-IR, elemental mapping, VSM</td>
<td>Catalytic activity (Atarod et.al., 2015)</td>
</tr>
<tr>
<td>5</td>
<td>Euphorbia wallichii (Wallich spurge)</td>
<td>L</td>
<td>Cu/RGO/Fe3O4 Spherical</td>
<td>CuNPs at 550 to 580 Ncs at 265</td>
<td>FESEM, EDS, TEM, BET, XRD, FT-IR, elemental mapping, VSM</td>
<td>Catalytic activity (Atarod et.al., 2015)</td>
</tr>
<tr>
<td>6</td>
<td>Melissa Officinalis L.</td>
<td>L</td>
<td>CuO/ZnO</td>
<td>CuONPs At270</td>
<td>SEM, Elemental mapping, EDS, TEM,</td>
<td>Catalytic activity (Bordbar et.al., 2016)</td>
</tr>
</tbody>
</table>
| No. | Species | Extracted | Methods | Year | Activity
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Euphorbia nerifolia L. (Indian Spurge)</td>
<td>Pd/perlit</td>
<td>XRD, TEM, EDS, XRD, FESEM, FT-IR</td>
<td>2018</td>
<td>Catalytic activity (Maryami et.al., 2017)</td>
</tr>
<tr>
<td>8</td>
<td>Ranunculus muricatus. rough-fruited buttercup</td>
<td>Au/TiO₂</td>
<td>XRD, TEM, FT-IR</td>
<td>2018</td>
<td>Bacterial inactivation (Tahir et.al., 2016)</td>
</tr>
<tr>
<td>9</td>
<td>Acalypha indica L. (Indian Acalypha), Euphorbia peplus Linn</td>
<td>Cu/sodium borosilicate</td>
<td>CuNPs at 558</td>
<td>SEM, EDS, TEM, XRD, BET, FT-IR</td>
<td>2018</td>
</tr>
<tr>
<td>10</td>
<td>Cuscuta reflexa (Giant dodder)</td>
<td>Cu/GO/MnO₂</td>
<td>CuNPs at 575</td>
<td>XRD, FESEM, BET, TGA, VSM, EDS, FT-IR</td>
<td>2018</td>
</tr>
<tr>
<td>11</td>
<td>Salvadora persica L. (Mustard tree)</td>
<td>Au/TiO₂-XRD, SEM, TEM</td>
<td>GRO at 230, 301, PdCl₂ at 420, SP-HRG-Pd at 1280</td>
<td>UV, XRD, TEM, FT-IR, XPS Raman</td>
<td>2018</td>
</tr>
<tr>
<td>12</td>
<td>Citrus paradisi (Grapefruit)</td>
<td>Silk-AuNPs quasi-spherical, hexagonal, and triangle shapes</td>
<td>AuNPs at 540</td>
<td>DRS, SEM, TEM, LSCM</td>
<td>2018</td>
</tr>
<tr>
<td>13</td>
<td>Euphorbia peplus Linn</td>
<td>Ag/Fe₂O₄</td>
<td>AgNPs at 450</td>
<td>XRD, TEM, EDS, FT-IR, FE-SEM</td>
<td>2018</td>
</tr>
<tr>
<td>14</td>
<td>Mortiño Vaccinium floribundum (Kunth)</td>
<td>Ag-Graphene</td>
<td>broad peak in between 240-340 and 480-530</td>
<td>FT-IR, UV, XRD, SEM, TEM</td>
<td>2018</td>
</tr>
<tr>
<td>15</td>
<td>Mentha longifolia (horse mint)</td>
<td>ZnO and ZnO/CuO</td>
<td>ZnO (W) at 370, ZnO (Ext) at 370</td>
<td>XRD, EDX, SEM, TGA, TEM, FT-IR, UV, DRS, BET</td>
<td>2018</td>
</tr>
<tr>
<td>16</td>
<td>Cylindrocladium floridanum</td>
<td>Nanogold-Bio-composite</td>
<td>AuNPs at 540</td>
<td>UV–Vis XRD, SEM, EDX, TEM</td>
<td>2018</td>
</tr>
<tr>
<td>17</td>
<td>Euphorbia helioscopia L. (sun spurge)</td>
<td>Ag/RGO/TiO₂</td>
<td>GO/TiO₂ visible region blue shift is observed in TiO₂</td>
<td>UV, TEM, XRD, SEM, EDS, ICP, FT-IR</td>
<td>2018</td>
</tr>
<tr>
<td>18</td>
<td>Orchis mascula L. (early spring orchis)</td>
<td>Cu/eggshell, Fe₃O₄/eggshell spherical shaped (size 5-15 nm)</td>
<td>CuNPs at 575</td>
<td>UV, DTA-TGA, FT-IR, FE-SEM, EDS, XRD, BET, VSM</td>
<td>2018</td>
</tr>
<tr>
<td>19</td>
<td>Pulicaria glutinosa</td>
<td>Graphene/Ag</td>
<td>GRO at 230 and 301, AgNPs at 420</td>
<td>UV, XRD, EDX</td>
<td>2018</td>
</tr>
</tbody>
</table>
20 Lycopersicon esculentum (Tomato) F Biocidal Silver-Activated Charcoal exfoliated structure almost-transparent single layer GO AgNPs at 410 NCs at 410 XRD, SEM, UV antimicrobial activity, water purification (Arputha et al., 2013)

Abbreviation (NPs – Nanoparticles; NCs – Nanocomposites; P- Peels; EO- Essential Oil; L- Leaf; WP- Whole Plant; B- Berries, RE – Root Extract; F- Fungus; RGO- Reduce Graphene Oxide, FCC- Face Centered Cubic Cell)

Conclusion

Nanocomposites are one of the most important tools in the field of science, engineering, and industry also. Nanocomposites are one step advance than metallic nanoparticles because nanocomposites are like a junction between two or more nanoparticles and they have highly versatile property when compared to nanoparticles. Nanocomposites are very useful for sunlight-induced degradation of organic pollutants and wastewater treatment. Although a variety of photo catalysts have been designed toward this goal, various methods have been used in formation of bimetallic or trimetallic and various organic and inorganic polymers nanocomposites. Most of these methods are still in progressing stage. In this review paper it is concluded that nanocomposites synthesized by green method are excellent in different biological activities with high catalytic power.

References

Atarod M, Nasrollahzadeh M & Sajadi SM (2016). *Withania coagulans* leaf extract and its application as
magnetically separable and reusable catalyst for the reduction of 4-nitrophenol; *J coll. Inter. Sci.*, 465: 249-258.

Nasrollahzadeh M, Atarod M, Jaleh B & Gandomirouzbahani M (2016). In situ green synthesis of Ag nanoparticles on graphene oxide/TiO2 nanocomposite and their catalytic activity for the reduction of 4-nitrophenol, congo red and methylene blue; *Ceramics International*; 42(7): 8587-8596.
